【題目】在直角坐標系xOy中,曲線C1的參數方程
(t為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C2的極坐標方程為ρ=4sinθ.
(1)求C1的極坐標方程與C2的直角坐標方程;
(2)已知射線
與C1交于O,P兩點,與C2交于O,Q兩點,且Q為OP的中點,求α.
科目:高中數學 來源: 題型:
【題目】某大型商場的空調在1月到5月的銷售量與月份相關,得到的統計數據如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷量 | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)經分析發現1月到5月的銷售量可用線性回歸模型擬合該商場空調的月銷量
(百件)與月份
之間的相關關系.請用最小二乘法求
關于
的線性回歸方程
,并預測6月份該商場空調的銷售量;
(2)若該商場的營銷部對空調進行新一輪促銷,對7月到12月有購買空調意愿的顧客進行問卷調查.假設該地擬購買空調的消費群體十分龐大,經過營銷部調研機構對其中的500名顧客進行了一個抽樣調查,得到如下一份頻數表:
有購買意愿對應的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
頻數 | 60 | 80 | 120 | 130 | 80 | 30 |
現采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機抽取6名,再從這6人中隨機抽取3人進行跟蹤調查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.
參考公式與數據:線性回歸方程
,其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現將“□”和“○”按照如下規律從左到右進行排列:若每一個“□”或“○”占1個位置,即上述圖形中,第1位是“□”,第4位是“○”,第7位是 “□”,則在第2017位之前(不含第2017位),“○”的個數為( )
□,○,□,○,○,○,□,○,○,○,○,○,□,○,○,○,○,○,○,○![]()
A.1970B.1971C.1972D.1973
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:
的兩個焦點分別為
,點M(1,0)與橢圓短軸的兩個端點的連線相互垂直.
(1)求橢圓C的方程;
(2)過點M(1,0)的直線與橢圓C相交于A、B兩點,設點N(3,2),記直線AN、BN的斜率分別為k1、k2,求證:k1+k2為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過拋物線C:x2=4y的準線上任意一點P作拋物線的切線PA,PB,切點分別為A,B,則A點到準線的距離與B點到準線的距離之和的最小值是( )
A.7B.6C.5D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個袋子中有5個大小相同的球,其中3個白球與2個黑球,現從袋中任意取出一個球,取出后不放回,然后再從袋中任意取出一個球,則第一次為白球、第二次為黑球的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,以坐標原點為極點,以
軸正半軸為極軸,建立極坐標系,點
的極坐標為
,直線
的極坐標方程為
,且
過點
,曲線
的參數方程為
(
為參數).
(Ⅰ)求曲線
上的點到直線
的距離的最大值;
(Ⅱ)過點
與直線
平行的直線
與曲線
交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某親子公園擬建議廣告牌,將邊長為
米的正方形ABCD和邊長為1米的正方形AEFG在A點處焊接,AM、AN、GM、DN均用加強鋼管支撐,其中支撐鋼管GM、DN垂直于地面于M點和N點,且GM、DN、MN長度相等
不計焊接點大小![]()
![]()
若
時,求焊接點A離地面距離;
若記
,求加強鋼管AN最長為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某區“創文明城區”(簡稱“創城”)活動中,教委對本區
四所高中學校按各校人數分層抽樣,隨機抽查了100人,將調查情況進行整理后制成下表:
學校 |
|
|
|
|
抽查人數 | 50 | 15 | 10 | 25 |
“創城”活動中參與的人數 | 40 | 10 | 9 | 15 |
(注:參與率是指:一所學校“創城”活動中參與的人數與被抽查人數的比值)假設每名高中學生是否參與”創城”活動是相互獨立的.
(1)若該區共2000名高中學生,估計
學校參與“創城”活動的人數;
(2)在隨機抽查的100名高中學生中,隨機抽取1名學生,求恰好該生沒有參與“創城”活動的概率;
(3)在上表中從
兩校沒有參與“創城”活動的同學中隨機抽取2人,求恰好
兩校各有1人沒有參與“創城”活動的概率是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com