【題目】已知傾斜角60°為的直線l平分圓:x2+y2+2x+4y﹣4=0,則直線l的方程為( )
A.
x﹣y+
+2=0
B.
x+y+
+2=0
C.
x﹣y+
﹣2=0
D.
x﹣y﹣
+2=0
【答案】C
【解析】解:傾斜角60°的直線方程,設(shè)為y=
x+b.
圓:x2+y2+2x+4y﹣4=0化為(x+1)2+(y+2)2=9,圓心坐標(biāo)(﹣1,﹣2).
因?yàn)橹本平分圓,圓心在直線y=
x+b上,所以﹣2=﹣
+b,解得b=
﹣2,
故所求直線方程為
x﹣y+
﹣2=0.
故選C.
【考點(diǎn)精析】掌握直線與圓的三種位置關(guān)系是解答本題的根本,需要知道直線與圓有三種位置關(guān)系:無公共點(diǎn)為相離;有兩個公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個唯一的公共點(diǎn)叫做切點(diǎn).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)對任意0<x2<x1都有
<1.且函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對稱,若f(2)=2,則不等式f(x)﹣x>0的解集是( )
A.(﹣2,0)∪(0,2)
B.(﹣∞,﹣2)∪(2,+∞)
C.(﹣∞,﹣2)∪(0,2)
D.(﹣2,0)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,且滿足cosa=a,sin(cosb)=b,cos(sinc)=c,則a,b,c的大小關(guān)系為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn , 滿足a
=2Sn+n+4,且a2﹣1,a3 , a7恰為等比數(shù)列{bn}的前3項(xiàng).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)令cn=
﹣
,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a為常數(shù),函數(shù)f(x)=xlnx﹣
ax2 .
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的最小值;
(2)若f(x)有兩個極值點(diǎn)x1 , x2(x1<x2)
①求實(shí)數(shù)a的取值范圍;
②求證:x1x2>1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
=1(a>b>0)的上頂點(diǎn)為(0,2),且離心率為
. (Ⅰ)求橢圓C的方程;
(Ⅱ)從橢圓C上一點(diǎn)M向圓x2+y2=1上引兩條切線,切點(diǎn)分別為A、B,當(dāng)直線AB分別與x軸、y軸交于P、Q兩點(diǎn)時(shí),求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)實(shí)數(shù)a∈R,函數(shù)
是R上的奇函數(shù). (Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)當(dāng)x∈(1,1)時(shí),求滿足不等式f(1m)+f(1m2)<0的實(shí)數(shù)m的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com