【題目】已知拋物線
的頂點(diǎn)為原點(diǎn),其焦點(diǎn)
到直線
的距離為
.設(shè)
為直線
上的點(diǎn),過點(diǎn)
作拋物線
的兩條切線
,其中
為切點(diǎn).
(1) 求拋物線
的方程;
(2) 當(dāng)點(diǎn)
為直線
上的定點(diǎn)時(shí),求直線
的方程;
(3) 當(dāng)點(diǎn)
在直線
上移動(dòng)時(shí),求
的最小值.
【答案】(Ⅰ)
(Ⅱ)
(Ⅲ) ![]()
【解析】試題分析:(1)設(shè)拋物線
的方程為
,利用點(diǎn)到直線的距離,求出
,得到拋物線方程;(2)對拋物線方程求導(dǎo),求出切線
的斜率,用點(diǎn)斜式寫出切線方程,化成一般式,找出共同點(diǎn),得到直線
的方程;(3)由拋物線定義可知
,聯(lián)立直線與拋物線方程,消去
,得到一個(gè)關(guān)于
的一元二次方程,由韋達(dá)定理求得
的值,還有
,將
表示成
的二次函數(shù)的形式,再求出最值.
試題解析: 解:(1)依題意,設(shè)拋物線
的方程為
,由
結(jié)合
,
解得
,所以拋物線
的方程為
.
(2)拋物線
的方程為
,即
,求導(dǎo)得
,
設(shè)
(其中
)則切線
的斜率分別為
,
所以切線
的方程為
,即
,即
,
同理可得切線
的方程為
,
因?yàn)榍芯
均過點(diǎn)
,所以
,
,
所以
為方程
的兩組解,
所以直線
的方程為
.
(3)由拋物線定義可知
,
聯(lián)立方程
,消去
整理得
.
由一元二次方程根與系數(shù)的關(guān)系可得
,
所以![]()
又點(diǎn)
在直線
上,所以
,
所以
,
所以當(dāng)
時(shí),
取得最小值,且取得最小值為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車急剎車的停車距離與諸多因素有關(guān),其中最為關(guān)鍵的兩個(gè)因素是駕駛員的反應(yīng)時(shí)間和汽車行駛的速度.設(shè)d表示停車距離,
表示反應(yīng)距離,
表示制動(dòng)距離,則
.下圖是根據(jù)美國公路局公布的試驗(yàn)數(shù)據(jù)制作的停車距離示意圖,對應(yīng)的汽車行駛的速度與停車距離的表格如下圖所示
![]()
序號 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)根據(jù)表格中的數(shù)據(jù),建立停車距離與汽車速度的函數(shù)模型.可選擇模型一:
或模型二:
(其中v為汽車速度,a,b
(2)通過計(jì)算
時(shí)的停車距離,分析選擇哪一個(gè)函數(shù)模型的擬合效果更好.
(參考數(shù)據(jù):
;
;
.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)一位網(wǎng)民在網(wǎng)上光顧某淘寶小店,經(jīng)過一番瀏覽后,對該店鋪中的
五種商品有購買意向.已知該網(wǎng)民購買
兩種商品的概率均為
,購買
兩種商品的概率均為
,購買
種商品的概率為
.假設(shè)該網(wǎng)民是否購買這五種商品相互獨(dú)立.
(1)求該網(wǎng)民至少購買4種商品的概率;
(2)用隨機(jī)變量
表示該網(wǎng)民購買商品的種數(shù),求
的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,若存在區(qū)間
,使得
在
上的值域?yàn)?/span>
,則
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對應(yīng)關(guān)系如下表:
AQI指數(shù)值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
下圖是某市10月1日—20日AQI指數(shù)變化趨勢:
![]()
下列敘述錯(cuò)誤的是
A. 這20天中AQI指數(shù)值的中位數(shù)略高于100
B. 這20天中的中度污染及以上的天數(shù)占![]()
C. 該市10月的前半個(gè)月的空氣質(zhì)量越來越好
D. 總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)討論函數(shù)
的定義域;
(2)當(dāng)
時(shí),解關(guān)于x的不等式:![]()
(3)當(dāng)
時(shí),不等式
對任意實(shí)數(shù)
恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,
,
,
為
中點(diǎn).
(1)證明:
平面
;
(2)若
平面
,
是邊長為2的正三角形,求點(diǎn)
到平面
的距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】偶函數(shù)
定義域?yàn)?/span>
,其導(dǎo)函數(shù)是
,當(dāng)
時(shí),有
,則關(guān)于
的不等式
的解集為( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
上一動(dòng)點(diǎn)
,過點(diǎn)
作
軸,垂足為
點(diǎn),
中點(diǎn)為
.
(1)當(dāng)
在圓
上運(yùn)動(dòng)時(shí),求點(diǎn)
的軌跡
的方程;
(Ⅱ)過點(diǎn)
的直線
與
交于
兩點(diǎn),當(dāng)
時(shí),求線段
的垂直平分線方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com