【題目】已知在極坐標(biāo)系中點C的極坐標(biāo)為
.
(1)求出以點C為圓心,半徑為2的圓的極坐標(biāo)方程(寫出解題過程)并畫出圖形;
(2)在直角坐標(biāo)系中,以圓C所在極坐標(biāo)系的極點為原點,極軸為x軸的正半軸建立直角坐標(biāo)系,點P是圓C上任意一點,Q(5,-
),M是線段PQ的中點,當(dāng)點P在圓C上運動時,求點M的軌跡的普通方程.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
圖象過點
,且在該點處的切線與直線
垂直.
(1)求實數(shù)
,
的值;
(2)對任意給定的正實數(shù)
,曲線
上是否存在兩點
,
,使得
是以
為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
:
過橢圓
:
的短軸端點,
分別是圓
與橢圓
上任意兩點,且線段
長度的最大值為3.
(1)求橢圓
的方程;
(2)過點
作圓
的一條切線交橢圓
于
兩點,求
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的圖象在
處的切線方程;
(2)若函數(shù)
在
上有兩個不同的零點,求實數(shù)
的取值范圍;
(3)是否存在實數(shù)
,使得對任意的
,都有函數(shù)
的圖象在
的圖象的下方?若存在,請求出最大整數(shù)
的值;若不存在,請說理由.
(參考數(shù)據(jù):
,
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任對全班50名學(xué)生的學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:
積極參加班級工作 | 不太主動參加班級工作 | 合計 | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(1)如果隨機(jī)抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運用獨立性檢驗的思想方法分析:學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度是否有關(guān)?并說明理由.
參考公式與臨界值表:K2=
.
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
(
)的離心率為
,短軸的一個端點為
.過橢圓左頂點
的直線
與橢圓的另一交點為
.
(1)求橢圓的方程;
(2)若
與直線
交于點
,求
的值;
(3)若
,求直線
的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某集團(tuán)為了獲得更大的收益,每年要投入一定的資金用于廣告促銷.經(jīng)調(diào)查投入廣告費t(百萬元),可增加銷售額約為-t2+5t(百萬元)(0≤t≤5) (注:收益=銷售額-投放).
(1)若該公司將當(dāng)年的廣告費控制在3百萬元之內(nèi),則應(yīng)投入多少廣告費,才能使該公司由此獲得的收益最大?
(2)現(xiàn)該公司準(zhǔn)備共投入3百萬元,分別用于廣告促銷和技術(shù)改造.經(jīng)預(yù)測,每投入技術(shù)改造費x(百萬元),可增加的銷售額約為-
x3+x2+3x(百萬元).請設(shè)計一個資金分配方案,使該公司由此獲得的收益最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對同一類的
,
,
,
四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:
甲說:“是
或
作品獲得一等獎”;
乙說:“
作品獲得一等獎”;
丙說:“
,
兩項作品未獲得一等獎”;
丁說:“是
作品獲得一等獎”.
若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com