【題目】將函數(shù)y=3sin(2x+
)的圖象向右平移
個(gè)單位長(zhǎng)度,所得圖象對(duì)應(yīng)的函數(shù)( )
A.在區(qū)間(
,
)上單調(diào)遞減
B.在區(qū)間(
,
)上單調(diào)遞增
C.在區(qū)間(﹣
,
)上單調(diào)遞減
D.在區(qū)間(﹣
,
)上單調(diào)遞增
【答案】B
【解析】解:將函數(shù)y=3sin(2x+
)的圖象向右平移
個(gè)單位長(zhǎng)度, 所得函數(shù)的解析式:y=3sin[2(x﹣
)+
]=3sin(2x﹣
).
令2kπ﹣
<2x﹣
<2kπ+
,k∈Z,
可得:kπ+
<x<kπ+
,k∈Z,
可得:當(dāng)k=0時(shí),對(duì)應(yīng)的函數(shù)y=3sin(2x﹣
)的單調(diào)遞增區(qū)間為:(
,
).
故選:B.
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)y=Asin(ωx+φ)的圖象變換,掌握?qǐng)D象上所有點(diǎn)向左(右)平移
個(gè)單位長(zhǎng)度,得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的
倍(縱坐標(biāo)不變),得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的
倍(橫坐標(biāo)不變),得到函數(shù)
的圖象即可以解答此題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知偶函數(shù)f(x)的定義域?yàn)镽,且在(﹣∞,0)上是增函數(shù),則f(﹣
)與f(a2﹣a+1)的大小關(guān)系為( )
A.f(﹣
)<f(a2﹣a+1)
B.f(﹣
)>f(a2﹣a+1)??
C.f(﹣
)≤f(a2﹣a+1)
D.f(﹣
)≥f(a2﹣a+1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足:a1=
,前n項(xiàng)和Sn=
an ,
(1)寫出a2 , a3 , a4;
(2)猜出an的表達(dá)式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,F(xiàn)D⊥底面ABCD,M是AB的中點(diǎn). ![]()
(1)求證:平面CFM⊥平面BDF;
(2)點(diǎn)N在CE上,EC=2,F(xiàn)D=3,當(dāng)CN為何值時(shí),MN∥平面BEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的偶函數(shù),對(duì)x∈R,都有f(x﹣2)=f(x+2),且當(dāng)x∈[﹣2,0]時(shí),f(x)=(
)x﹣1,若在區(qū)間(﹣2,6]內(nèi)關(guān)于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是( )
A.(2,3)
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,DP⊥x軸,點(diǎn)M在DP的延長(zhǎng)線上,且|DM|=2|DP|.當(dāng)點(diǎn)P在圓x2+y2=1上運(yùn)動(dòng)時(shí).
(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)過點(diǎn)T(0,t)作圓x2+y2=1的切線交曲線C于A,B兩點(diǎn),求△AOB面積S的最大值和相應(yīng)的點(diǎn)T的坐標(biāo).![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一半徑為2的半圓形紙板裁剪成等腰梯形ABCD的形狀,下底AB是半圓的直徑,上底CD的端點(diǎn)在圓周上,則所得梯形面積的最大值為( )
![]()
A. 3
B. 3
C. 5
D. 5![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lg(x2+tx+2)(t為常數(shù),且﹣2
<t<2
).
(1)當(dāng)x∈[0,2]時(shí),求函數(shù)f(x)的最小值(用t表示);
(2)是否存在不同的實(shí)數(shù)a,b,使得f(a)=lga,f(b)=lgb,并且a,b∈(0,2).若存在,求出實(shí)數(shù)t的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com