(1)求證:函數(shù)g(x)=
在(0,+∞)上是增函數(shù);
(2)求證:當(dāng)x1>0,x2>0時(shí),有f(x1+x2)>f(x1)+f(x2);
(3)已知不等式ln(1+x)<x在x>-1且x≠0時(shí)恒成立,求證:
ln22+
ln32+
ln42+…+
)2ln(n+1)2>
(n∈N*).
證明:(1)由g(x)=
,對g(x)求導(dǎo)數(shù)知g′(x)=
. ?
由xf′(x)>f(x)可知:g′(x)>0在x>0時(shí)恒成立.??
從而g(x)=
在x>0時(shí)是單調(diào)遞增函數(shù). ?
(2)由(1)知g(x)=
在x>0時(shí)是增函數(shù).?
在x1>0,x2>0時(shí),
>
,
>
. ?
于是f(x1)<
f(x1+x2),f(x2)<
f(x1+x2).??
兩式相加得到f(x1)+f(x2)<f(x1+x2). ?
(3)由(2)可知g(x)=
在x>0上單調(diào)遞增時(shí),有f(x1+x2)>f(x1)+f(x2)(x1>0,x2>0)恒成立.
由數(shù)學(xué)歸納法可知xi>0(i=1,2,3,…,n)時(shí),?
有f(x1)+f(x2)+f(x3)+…+f(xn)<f(x1+x2+x3+…+xn)(n≥2)恒成立.?
設(shè)f(x)=xlnx,則在xi>0(i=1,2,3,…,n)時(shí),?
有x1lnx1+x2lnx2+…+xnlnxn<(x1+x2+…+xn)ln(x1+x2+x3+…+xn)(n≥2) ①?
恒成立. ?
令xn=
,記Sn=x1+x2+…+xn=
+
+…+
.?
由Sn<
+
+…+
=1-
.?
Sn>
+
+…+
=
-
.?
(x1+x2+…+xn)ln(x1+x2+x3+…+xn)<(x1+x2+…+xn)ln(1-
)<-
(x1+x2+…+xn)
(∵ln(1+x)<x)<-
(
-
)=-
. ②
則②代入①中,可知
ln
+
ln
+…+
ln
<-
.?
于是
ln22+
ln32+…+
ln(n+1)2>
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(Ⅰ)求證:函數(shù)g(x)=
在(0,+∞)上是增函數(shù);
(Ⅱ)求證:當(dāng)x1>0,x2>0時(shí),有f(x1+x2)>f(x1)+f(x2);
(Ⅲ)已知不等式ln(1+x)<x在x>-1且x≠0時(shí)恒成立,求證:
ln22+
ln32+
ln42+…+
ln(n+1)2>
(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(Ⅰ)求證:函數(shù)g(x)=
在(0,+∞)上是增函數(shù);
(Ⅱ)求證:當(dāng)x1>0,x2>0時(shí),有f(x1+x2)>f(x1)+f(x2);
(Ⅲ)求證:
ln22+
ln32+
ln42+…+
ln(n+1)2>
(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(Ⅰ)求證:函數(shù)g(x)=
在(0,+∞)上是增函數(shù);
(Ⅱ)求證:當(dāng)x1>0,x2>0時(shí),有f(x1+x2)>f(x1)+f(x2);
(Ⅲ)已知不等式ln(1+x)<x在x>-1且x≠0時(shí)恒成立,求證:
ln22+
ln32+
ln42+…+
ln(n+1)2>
(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求證:函數(shù)g(x)=
在(0,+∞)上單調(diào)遞增;
(2)求證:當(dāng)x1>0,x2>0時(shí),f(x1+x2)>f(x1)+f(x2).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com