設(shè)函數(shù)F(x )=x2+aln(x+1)
(I)若函數(shù)y=f(x)在區(qū)間[1,+∞)上是單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;
(II)若函數(shù)y=f(x)有兩個極值點x1,x2且
,求證:
.
(Ⅰ)
; (II)見解析.
解析試題分析:(Ⅰ)利用導(dǎo)數(shù),先對函數(shù)進行求導(dǎo),讓
,在[1,+∞)上是恒成立的,求解可得a的取值范圍;(II)令
,依題意方程
在區(qū)間
有兩個不等的實根,記
,則有
,得
,然后找
的表達式,利用導(dǎo)數(shù)求此函數(shù)單調(diào)性,可得結(jié)論.
試題解析:(Ⅰ)
在區(qū)間
上恒成立,
即
區(qū)間
上恒成立, 1分
. 3分
經(jīng)檢驗, 當
時,
,
時,
,
所以滿足題意的a的取值范圍為
. 4分
(Ⅱ)函數(shù)的定義域
,
,依題意方程
在區(qū)間
有兩個不等的實根,記
,則有
,得
. 6分
法一:![]()
,
,
,
,令
, 8分
,
,
,
因為
,存在
,使得
,![]()
![]()
![]()
![]()
![]()
- 0 + ![]()
,
,
,所以函數(shù)
在
為減函數(shù), 10分
即
12分
法二:6分段后面還有如下證法,可以參照酌情給分.
【證法2】
為方程
的解,所以
,
∵
,
,
,∴![]()
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)h(x)=ax2+bx+c(其中c<3),其導(dǎo)函數(shù)
的圖象如圖,f(x)=6lnx+h(x).![]()
①求f(x)在x=3處的切線斜率;
②若f(x)在區(qū)間(m,m+
)上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
③若對任意k∈[-1,1],函數(shù)y=kx(x∈(0,6])的圖象總在函數(shù)y=f(x)圖象的上方,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(
).
(Ⅰ)求
的單調(diào)區(qū)間;
(Ⅱ)試通過研究函數(shù)
(
)的單調(diào)性證明:當
時,
;
(Ⅲ)證明:當
,且
均為正實數(shù),
時,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,![]()
.
(Ⅰ)若
,求函數(shù)
在區(qū)間
上的最值;
(Ⅱ)若
恒成立,求
的取值范圍.
注:
是自然對數(shù)的底數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
,且函數(shù)
在點
處的切線方程為
.
(Ⅰ)求函數(shù)
的解析式;
(Ⅱ)設(shè)點
,當
時,直線
的斜率恒小于
,試求實數(shù)
的取值范圍;
(Ⅲ)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,它的一個極值點是
.
(Ⅰ) 求
的值及
的值域;
(Ⅱ)設(shè)函數(shù)
,試求函數(shù)
的零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)求函數(shù)
的極大值.
(Ⅱ)求證:存在
,使
;
(Ⅲ)對于函數(shù)
與
定義域內(nèi)的任意實數(shù)x,若存在常數(shù)k,b,使得
和
都成立,則稱直線
為函數(shù)
與
的分界線.試探究函數(shù)
與
是否存在“分界線”?若存在,請給予證明,并求出k,b的值;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com