【題目】由團(tuán)中央學(xué)校部、全國(guó)學(xué)聯(lián)秘書(shū)處、中國(guó)青年報(bào)社共同舉辦的2018年度全國(guó)“最美中學(xué)生”尋訪活動(dòng)結(jié)果出爐啦,此項(xiàng)活動(dòng)于2018年6月啟動(dòng),面向全國(guó)中學(xué)在校學(xué)生,通過(guò)投票方式尋訪一批在熱愛(ài)祖國(guó)、勤奮學(xué)習(xí)、熱心助人、見(jiàn)義勇為等方面表現(xiàn)突出、自覺(jué)樹(shù)立和踐行社會(huì)主義核心價(jià)值觀的“最美中學(xué)生”.現(xiàn)隨機(jī)抽取了30名學(xué)生的票數(shù),繪成如圖所示的莖葉圖,若規(guī)定票數(shù)在65票以上(包括65票)定義為風(fēng)華組.票數(shù)在65票以下(不包括65票)的學(xué)生定義為青春組.
![]()
(1)如果用分層抽樣的方法從青春組和風(fēng)華組中抽取5人,再?gòu)倪@5人中隨機(jī)抽取2人,那么至少有1人在青春組的概率是多少?
(2)用樣本估計(jì)總體,把頻率作為概率,若從該地區(qū)所有的中學(xué)(人數(shù)很多)中隨機(jī)選取4人,用
表示所選4人中青春組的人數(shù),試寫(xiě)出
的分布列,并求出
的數(shù)學(xué)期望.
【答案】(1)
;(2)分布列見(jiàn)解析,![]()
【解析】
(1) 用A表示“至少有1人在青春組”,利用對(duì)立事件概率計(jì)算公式能求出至少有1人在青春組的概率.
(2)由題知,抽取的30名學(xué)生中有12名學(xué)生是青春組學(xué)生,抽取1名學(xué)生是青春組學(xué)生的概率為
,從所有的中學(xué)生中抽取1名學(xué)生是甲組學(xué)生的概率是
,
服從二項(xiàng)分布
.由此能求出
的分布列、數(shù)學(xué)期望.
解:(1) 用A表示“至少有1人在青春組”,
則至少有1人在青春組的概率為
;
(2)由題知,抽取的30名學(xué)生中有12名學(xué)生是青春組學(xué)生,抽取1名學(xué)生是青春組學(xué)生的概率為
,
那么從所有的中學(xué)生中抽取1名學(xué)生是甲組學(xué)生的概率是
,
又因?yàn)樗】傮w數(shù)量較多,抽取4名學(xué)生可以看出4次獨(dú)立重復(fù)實(shí)驗(yàn),于是
服從二項(xiàng)分布
.
的取值為0,1,2,3,4.且
.
所以得
的分布列為:
|
|
|
|
|
|
|
|
|
|
|
|
數(shù)學(xué)期望
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,四邊形ABCD為平行四邊形,且
,
,
平面PAC.
![]()
(1)求證:
平面
;
(2)若異面直線PC與AD所成的角為30°,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三(1)班在一次語(yǔ)文測(cè)試結(jié)束后,發(fā)現(xiàn)同學(xué)們?cè)诒痴b內(nèi)容方面失分較為嚴(yán)重.為了提升背誦效果,班主任倡議大家在早晩讀時(shí)間站起來(lái)大聲誦讀,為了解同學(xué)們對(duì)站起來(lái)大聲誦讀的態(tài)度,對(duì)全班50名同學(xué)進(jìn)行調(diào)查,將調(diào)查結(jié)果進(jìn)行整理后制成如表:
考試分?jǐn)?shù) |
|
|
|
|
|
|
頻數(shù) | 5 | 10 | 15 | 5 | 10 | 5 |
贊成人數(shù) | 4 | 6 | 9 | 3 | 6 | 4 |
(1)欲使測(cè)試優(yōu)秀率為
,則優(yōu)秀分?jǐn)?shù)線應(yīng)定為多少分?
(2)依據(jù)第1問(wèn)的結(jié)果及樣本數(shù)據(jù)研究是否贊成站起來(lái)大聲誦讀的態(tài)度與考試成績(jī)是否優(yōu)秀的關(guān)系,列出2×2列聯(lián)表,并判斷是否有
的把握認(rèn)為贊成與否的態(tài)度與成績(jī)是否優(yōu)秀有關(guān)系.
參考公式及數(shù)據(jù):
,
.
| 0.100 | 0.050 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
過(guò)點(diǎn)
,且與
內(nèi)切,設(shè)
的圓心
的軌跡為
,
(1)求軌跡C的方程;
(2)設(shè)直線
不經(jīng)過(guò)點(diǎn)
且與曲線
交于點(diǎn)
兩點(diǎn),若直線
與直線
的斜率之積為
,判斷直線
是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出此定點(diǎn)的坐標(biāo),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中“勾股容方”問(wèn)題:“今有勾五步,股十二步,問(wèn)勾中容方幾何?”魏晉時(shí)期數(shù)學(xué)家劉徽在其《九章算術(shù)注》中利用出入相補(bǔ)原理給出了這個(gè)問(wèn)題的一般解法:如圖1,用對(duì)角線將長(zhǎng)和寬分別為
和
的矩形分成兩個(gè)直角三角形,每個(gè)直角三角形再分成一個(gè)內(nèi)接正方形(黃)和兩個(gè)小直角三角形(朱、青).將三種顏色的圖形進(jìn)行重組,得到如圖2所示的矩形.該矩形長(zhǎng)為
,寬為內(nèi)接正方形的邊長(zhǎng)
.由劉徽構(gòu)造的圖形還可以得到許多重要的結(jié)論,如圖3.設(shè)
為斜邊
的中點(diǎn),作直角三角形
的內(nèi)接正方形對(duì)角線
,過(guò)點(diǎn)
作
于點(diǎn)
,則下列推理正確的是( )
![]()
①由圖1和圖2面積相等得
;
②由
可得
;
③由
可得
;
④由
可得
.
A.①②③④B.①②④C.②③④D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)給出三個(gè)條件:①函數(shù)
的圖象關(guān)于直線
對(duì)稱(chēng);②函數(shù)
的圖象關(guān)于點(diǎn)
對(duì)稱(chēng);③函數(shù)
的圖象上相鄰兩個(gè)最高點(diǎn)的距離為
.從中選出兩個(gè)條件補(bǔ)充在下面的問(wèn)題中,并以此為依據(jù)求解問(wèn)題.
已知函數(shù)
(
,
),_____,_____.求函數(shù)
在區(qū)間
上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
在
處取得極值A,函數(shù)
,其中
…是自然對(duì)數(shù)的底數(shù).
(1)求m的值,并判斷A是
的最大值還是最小值;
(2)求
的單調(diào)區(qū)間;
(3)證明:對(duì)于任意正整數(shù)n,不等式
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn和通項(xiàng)an滿足
.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)等差數(shù)列{bn}中,b1=3a1,b2=2,求數(shù)列{an+bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
是拋物線
上位于
軸兩側(cè)的不同兩點(diǎn)
(1)若
在直線
上,且使得以
為頂點(diǎn)的四邊形恰為正方形,求該正方形的面積.
(2)求過(guò)
、
的切線與直線
圍成的三角形面積的最小值;
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com