【題目】已知曲線y=2x2上一點(diǎn)A(2,8),則在點(diǎn)A處的切線斜率為 ( ).
A. 4 B. 16
C. 8 D. 2
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在
上的函數(shù)
是奇函數(shù).
(1)求實(shí)數(shù)
,
的值;
(2)判斷
的單調(diào)性,并用函數(shù)的單調(diào)性定義證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知直線
過(guò)點(diǎn)
,傾斜角
,再以原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫(xiě)出直線
的參數(shù)方程和曲線
的直角坐標(biāo)方程;
(2)若直線
與曲線
分別交于
、
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】類比平面幾何中的命題:“垂直于同一直線的兩條直線平行”,在立體幾何中,可以得到命題“__________”,這個(gè)類比命題的真假性是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列表示圖書(shū)借閱的流程正確的是( )
A. 入庫(kù)→閱覽→借書(shū)→找書(shū)→出庫(kù)→還書(shū) B. 入庫(kù)→找書(shū)→閱覽→借書(shū)→出庫(kù)→還書(shū)
C. 入庫(kù)→閱覽→借書(shū)→找書(shū)→還書(shū)→出庫(kù) D. 入庫(kù)→找書(shū)→閱覽→借書(shū)→還書(shū)→出庫(kù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,
.
(1)求
的極值;
(2)設(shè)
≤
,記
在
上的最大值為
,求函數(shù)
的最小值;
(3)設(shè)函數(shù)
(
為常數(shù)),若使
≤
≤
在
上恒成立的實(shí)數(shù)
有且只有一個(gè),求實(shí)數(shù)
和
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱
中,底面
是直角三角形,
,
為側(cè)棱
的中點(diǎn).
(1)求異面直線
、
所成角的余弦值;
(2)求二面角
的平面角的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 用反證法證明命題:“三角形三個(gè)內(nèi)角至少有一個(gè)不大于60°”時(shí),應(yīng)假設(shè)( )
A.三個(gè)內(nèi)角都不大于60° B.三個(gè)內(nèi)角都大于60°
C.三個(gè)內(nèi)角至多有一個(gè)大于60° D.三個(gè)內(nèi)角至多有兩個(gè)大于60°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱柱
中,側(cè)棱
底面
,
,
,
,
,
為
的中點(diǎn).
![]()
(1)證明:
;
(2)求二面角
的正弦值;
(3)設(shè)點(diǎn)
在線段
上,且直線
與平面
所成角的正弦值為
,求線段
的長(zhǎng).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com