【題目】某工廠生產(chǎn)某種型號(hào)的電視機(jī)零配件,為了預(yù)測(cè)今年
月份該型號(hào)電視機(jī)零配件的市場(chǎng)需求量,以合理安排生產(chǎn),工廠對(duì)本年度
月份至
月份該型號(hào)電視機(jī)零配件的銷(xiāo)售量及銷(xiāo)售單價(jià)進(jìn)行了調(diào)查,銷(xiāo)售單價(jià)
(單位:元)和銷(xiāo)售量
(單位:千件)之間的
組數(shù)據(jù)如下表所示:
月份 |
|
|
|
|
|
|
銷(xiāo)售單價(jià) |
|
|
|
|
|
|
銷(xiāo)售量 |
|
|
|
|
|
|
(1)根據(jù)1至
月份的數(shù)據(jù),求
關(guān)于
的線性回歸方程(系數(shù)精確到
);
(2)結(jié)合(1)中的線性回歸方程,假設(shè)該型號(hào)電視機(jī)零配件的生產(chǎn)成本為每件
元,那么工廠如何制定
月份的銷(xiāo)售單價(jià),才能使該月利潤(rùn)達(dá)到最大(計(jì)算結(jié)果精確到
)?
參考公式:回歸直線方程
,其中
.
參考數(shù)據(jù):
.
【答案】(1)
(2)7月份銷(xiāo)售單價(jià)為10.8元時(shí),該月利潤(rùn)才能達(dá)到最大.
【解析】
(1)利用公式可計(jì)算線性回歸方程.
(2)利用(1)的回歸方程可得7月份的利潤(rùn)函數(shù),利用二次函數(shù)的性質(zhì)可得其最大值.
解:(1)由條件知,
,
,
,
從而
,
故
關(guān)于
的線性回歸方程為
.
(2)假設(shè)7月份的銷(xiāo)售單價(jià)為
元,則由(1)可知,7月份零配件銷(xiāo)量為
,
故7月份的利潤(rùn)
,
其對(duì)稱(chēng)軸
,故7月份銷(xiāo)售單價(jià)為10.8元時(shí),該月利潤(rùn)才能達(dá)到最大.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
為等差數(shù)列,各項(xiàng)為正的等比數(shù)列
的前
項(xiàng)和為
,
,
,__________.在①
;②
;③
這三個(gè)條件中任選其中一個(gè),補(bǔ)充在橫線上,并完成下面問(wèn)題的解答(如果選擇多個(gè)條件解答,則以選擇第一個(gè)解答記分).
(1)求數(shù)列
和
的通項(xiàng)公式;
(2)求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲箱中裝有3個(gè)紅球,2個(gè)黑球,乙箱中裝有2個(gè)紅球,3個(gè)黑球,這些球除顏色外完全相同,某商場(chǎng)舉行有獎(jiǎng)促銷(xiāo)活動(dòng),規(guī)定顧客購(gòu)物1000元以上,可以參與抽獎(jiǎng)一次,設(shè)獎(jiǎng)規(guī)則如下:每次分別從以上兩個(gè)箱子中各隨機(jī)摸出2個(gè)球,共4個(gè)球,若摸出4個(gè)球都是紅球,則獲得一等獎(jiǎng),獎(jiǎng)金300元;摸出的球中有3個(gè)紅球,則獲得二等獎(jiǎng),獎(jiǎng)金200元;摸出的球中有2個(gè)紅球,則獲得三等獎(jiǎng),獎(jiǎng)金100元;其他情況不獲獎(jiǎng),每次摸球結(jié)束后將球放回原箱中.
(1)求在1次摸獎(jiǎng)中,獲得二等獎(jiǎng)的概率;
(2)若3人各參與摸獎(jiǎng)1次,求獲獎(jiǎng)人數(shù)X的數(shù)學(xué)期望
;
(3)若商場(chǎng)同時(shí)還舉行打9折促銷(xiāo)活動(dòng),顧客只能在兩項(xiàng)促銷(xiāo)活動(dòng)中任選一項(xiàng)參與.假若你購(gòu)買(mǎi)了價(jià)值1200元的商品,那么你選擇參與哪一項(xiàng)活動(dòng)對(duì)你有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,某校在高中生中隨機(jī)抽取100名學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表:
喜歡數(shù)學(xué) | 不喜歡數(shù)學(xué) | 合計(jì) | |
男生 | 40 | ||
女生 | 30 | ||
合計(jì) | 50 | 100 |
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為“喜歡數(shù)學(xué)”與性別有關(guān)?說(shuō)明你的理由;
(3)若在接受調(diào)查的所有男生中按照“是否喜歡數(shù)學(xué)”進(jìn)行分層抽樣,現(xiàn)隨機(jī)抽取6人,再?gòu)?/span>6人中抽取3人,求至少有1人“不喜歡數(shù)學(xué)”的概率.
下面的臨界值表供參考:
| 0.05 | 0.010 | 0.005 | 0.001 |
k | 3.841 | 6.635 | 7.879 | 10.828 |
(參考公式:
,其中
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次考試中,某班級(jí)50名學(xué)生的成績(jī)統(tǒng)計(jì)如下表,規(guī)定75分以下為一般,大于等于75分小于85分為良好,85分及以上為優(yōu)秀.
分?jǐn)?shù) | 69 | 73 | 74 | 75 | 77 | 78 | 79 | 80 | 82 | 83 | 85 | 87 | 89 | 93 | 95 | 合計(jì) |
人數(shù) | 2 | 4 | 4 | 2 | 3 | 4 | 6 | 3 | 3 | 4 | 4 | 5 | 2 | 3 | 1 | 50 |
經(jīng)計(jì)算,樣本的平均值
,標(biāo)準(zhǔn)差
.為評(píng)判該份試卷質(zhì)量的好壞,從其中任取一人,記其成績(jī)?yōu)?/span>X,并根據(jù)以下不等式進(jìn)行評(píng)判:
①
;
②
;
③
.
評(píng)判規(guī)則:若同時(shí)滿(mǎn)足上述三個(gè)不等式,則被評(píng)為優(yōu)秀試卷;若僅滿(mǎn)足其中兩個(gè)不等式,則被評(píng)為合格試卷;其他情況,則被評(píng)為不合格試卷.
(1)試判斷該份試卷被評(píng)為哪種等級(jí);
(2)按分層抽樣的方式從3個(gè)層次的學(xué)生中抽出10名學(xué)生,再?gòu)某槌龅?/span>10名學(xué)生中隨機(jī)抽出4人進(jìn)行學(xué)習(xí)方法交流,用隨機(jī)變量表示4人中成績(jī)優(yōu)秀的人數(shù),求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
,(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫(xiě)出曲線
的極坐標(biāo)方程和曲線
的直角坐標(biāo)方程;
(2)若射線
與曲線
相交于點(diǎn)
,將
逆時(shí)針旋轉(zhuǎn)
后,與曲線
相交于點(diǎn)
,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若S
是公差不為0的等差數(shù)列
的前
項(xiàng)和,且
成等比數(shù)列。
(1)求等比數(shù)列
的公比;
(2)若
,求
的通項(xiàng)公式;
(3)設(shè)
,
是數(shù)列
的前
項(xiàng)和,求使得
對(duì)所有
都成立的最小正整數(shù)
。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com