【題目】已知圓
,點(diǎn)
是直線
上的一動(dòng)點(diǎn),過(guò)點(diǎn)
作圓
的切線
,切點(diǎn)為
.
(1)當(dāng)切線
的長(zhǎng)度為
時(shí),求點(diǎn)
的坐標(biāo);
(2)若
的外接圓為圓
,試問(wèn):當(dāng)
在直線
上運(yùn)動(dòng)時(shí),圓
是否過(guò)定點(diǎn)?若存在,求出所有的定點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
(3)求線段
長(zhǎng)度的最小值.
【答案】(1)
或
(2)圓過(guò)定點(diǎn)
(3)![]()
【解析】
試題分析:(1)根據(jù)圓M的標(biāo)準(zhǔn)方程即可求出半徑r=2和圓心M坐標(biāo)(0,4),并可設(shè)P(2b,b),從而由條件便可求出|MP|=
=4,這樣便可求出b的值,即得出點(diǎn)P的坐標(biāo);(2)容易求出圓N的圓心坐標(biāo)(b,
),及半徑,從而可得出圓N的標(biāo)準(zhǔn)方程,化簡(jiǎn)后可得到(2x+y-4)b-(x2+y2-4y)=0,從而可建立關(guān)于x,y的方程,解出x,y,便可得出圓N所過(guò)的定點(diǎn)坐標(biāo);(3)可寫(xiě)出圓N和圓M的一般方程,聯(lián)立這兩個(gè)一般方程即可求出相交弦AB的直線方程,進(jìn)而求出圓心M到直線AB的距離,從而求出弦長(zhǎng)
,顯然可看出
時(shí),AB取最小值,并求出該最小值
試題解析:(1)由題意知,圓
的半徑
,設(shè)
,
∵
是圓
的一條切線,∴
,
∴
,解得
,
∴
或
. ………………………4分
(2)設(shè)
,∵
,
∴經(jīng)過(guò)
三點(diǎn)的圓
以
為直徑,
其方程為
, ……………………6分
即
,
由
, ………………………8分
解得
或
,
∴圓過(guò)定點(diǎn)
, ………………………10分
(3)因?yàn)閳A
方程為
,
即
,
圓
,即
,
②-①得:圓
方程與圓
相交弦
所在直線方程為:
, ………………………12分
點(diǎn)
到直線
的距離
,
,…………14分
當(dāng)
時(shí),
有最小值
. ………………………16分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,且
.
(1)若函數(shù)
在區(qū)間
上是減函數(shù),求實(shí)數(shù)
的取值范圍;
(2)設(shè)函數(shù)
,當(dāng)
時(shí),
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】連江一中第49屆田徑運(yùn)動(dòng)會(huì)提出了“我運(yùn)動(dòng)、我陽(yáng)光、我健康、我快樂(lè)”的口號(hào),某同學(xué)要設(shè)計(jì)一張如圖所示的豎向張貼的長(zhǎng)方形海報(bào)進(jìn)行宣傳,要求版心面積為162
(版心是指圖中的長(zhǎng)方形陰影部分,
為長(zhǎng)度單位分米),上、下兩邊各空2
,左、右兩邊各空1
.
![]()
(Ⅰ)若設(shè)版心的高為
,求海報(bào)四周空白面積關(guān)于
的函數(shù)
的解析式;
(Ⅱ)要使海報(bào)四周空白面積最小,版心的高和寬該如何設(shè)計(jì)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正四面體
的頂點(diǎn)
、
、
分別在兩兩垂直的三條射線
,
,
上,則在下列命題中,錯(cuò)誤的是( )
![]()
A.
是正三棱錐
B. 直線
與平面
相交
C. 直線
與平面
所成的角的正弦值為![]()
D. 異面直線
和
所成角是![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,
底面
,
,
為等邊三角形,
,
,
為
的中點(diǎn).
![]()
(1)求
;
(2)求平面
與平面
所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合I={1,2,3,4,5},選擇I的兩個(gè)非空子集A和B,要使B中最小的數(shù)大于A中最大的數(shù),則不同的選擇方法共有
A.50種 B.49種 C.48種 D.47種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
是邊長(zhǎng)為3的正方形,
平面
,
,且
,
.
![]()
(1)試在線段
上確定一點(diǎn)
的位置,使得
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
在
處取得極值.
(1)討論
和
是函數(shù)
的極大值還是極小值;
(2)過(guò)點(diǎn)
作曲線
的切線,求此切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
是二次函數(shù),不等式
的解集是
,且
在區(qū)間
上的最大值是12.
(1)求
的解析式;
(2)是否存在自然數(shù)
,使得方程
在區(qū)間
內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根?若存在,求出
的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com