如圖,已知正方體
,
分別為各個(gè)面的對(duì)角線;![]()
(1)求證:
;
(2)求異面直線
所成的角.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,
且AC=AD=CD=DE=2,AB=1.![]()
(Ⅰ)請(qǐng)?jiān)诰段CE上找到點(diǎn)F的位置,使得恰有直線BF∥平面ACD,并證明這一事實(shí);
(Ⅱ)求多面體ABCDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使得平面ABEF
平面EFDC.![]()
(Ⅰ) 當(dāng)
,是否在折疊后的AD上存在一點(diǎn)
,且
,使得CP∥平面ABEF?若存在,求出
的值;若不存在,說(shuō)明理由;
(Ⅱ) 設(shè)BE=x,問(wèn)當(dāng)x為何值時(shí),三棱錐A
CDF的體積有最大值?并求出這個(gè)最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE,F(xiàn)為CD中點(diǎn).![]()
(Ⅰ)求證:EF⊥平面BCD;
(Ⅱ)求二面角C-DE-A的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖四棱錐E—ABCD中,底面ABCD是平行四邊形。∠ABC=45°,BE=BC=
EA=EC=6,M為EC中點(diǎn),平面BCE⊥平面ACE,AE⊥EB![]()
(I)求證:AE⊥BC (II)求四棱錐E—ABCD體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1為矩形,AB=1,AA1=
,D為AA1中點(diǎn),BD與AB1交于點(diǎn)O,CO丄側(cè)面ABB1A1.![]()
(Ⅰ)證明:BC丄AB1;
(Ⅱ)若OC=OA,求二面角C1-BD-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知菱形
所在平面與直角梯形
所在平面互相垂直,
,
點(diǎn)
,
分別是線段
,
的中點(diǎn). ![]()
(I)求證:平面
平面
;
(Ⅱ)點(diǎn)
在直線
上,且
//平面
,求平面
與平面
所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
長(zhǎng)方體
中,底面
是正方形,
,
是
上的一點(diǎn).![]()
⑴求異面直線
與
所成的角;
⑵若
平面
,求三棱錐
的體積;
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com