【題目】設α,β是兩個不同的平面,m,n是兩條不同的直線,有如下兩個命題:q:若m⊥α,n⊥β且m∥n,則α∥β;q:若m∥α,n∥β且m∥n,則α∥β.( )
A.命題q,p都正確
B.命題p正確,命題q不正確
C.命題q,p都不正確
D.命題q不正確,命題p正確
科目:高中數學 來源: 題型:
【題目】如圖:在四棱錐P﹣ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,點M,N分別為BC,PA的中點,且PA=AB=2.
(Ⅰ)證明:BC⊥平面AMN;
(Ⅱ)求三棱錐N﹣AMC的體積;
(Ⅲ)在線段PD上是否存在一點E,使得NM∥平面ACE;若存在,求出PE的長;若不存在,說明理由.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點
在橢圓
:
(
)上,設
,
,
分別為左頂點、上頂點、下頂點,且下頂點
到直線
的距離為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設點
,
(
)為橢圓
上兩點,且滿足
,求證:
的面積為定值,并求出該定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=3,AD=1,E、F分別是AB的兩個三等分點,AC,DF相交于點G,建立適當的平面直角坐標系: ![]()
(1)若動點M到D點距離等于它到C點距離的兩倍,求動點M的軌跡圍成區域的面積;
(2)證明:E G⊥D F.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等差數列{an}的前n項和為Sn , 已知a3=24,S11=0.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)求數列{an}的前n項和Sn;
(Ⅲ)當n為何值時,Sn最大,并求Sn的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:如果函數y=f(x)在定義域內給定區間[a,b]上存在x0(a<x0<b),滿足f(x0)=
,則稱函數y=f(x)是[a,b]上的“平均值函數”,x0是它的一個均值點.例如y=|x|是[﹣2,2]上的平均值函數,0就是它的均值點.若函數f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函數”,則實數m的取值范圍是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com