【題目】在圓
上任取一點(diǎn)
,過點(diǎn)
作
軸的垂線段,垂足為
,點(diǎn)
在直線
上,且
,當(dāng)點(diǎn)
在圓上運(yùn)動(dòng)時(shí).
(1)求點(diǎn)
的軌跡
的方程,并指出軌跡
.
(2)直線l不過原點(diǎn)O且不平行于坐標(biāo)軸,l與C有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M.證明:直線OM的斜率與直線l的斜率的乘積為定值.
【答案】(1)
,橢圓,(2)見解析.
【解析】
(1)設(shè)點(diǎn)
的坐標(biāo)為
,由
,可得
,代入
化簡(jiǎn)即可得結(jié)果;(2)設(shè)直線
,代入
可得
,利用韋達(dá)定理以及中點(diǎn)坐標(biāo)公式可得
,從而可得結(jié)論.
(1)設(shè)點(diǎn)
的坐標(biāo)為
,
因?yàn)?/span>
在圓上,所以![]()
設(shè)
,因?yàn)?/span>
,且
與
軸垂直,
所以
,代入 ![]()
可得
,化為
,
即
的方程為
,軌跡表示焦點(diǎn)在
軸上的橢圓.
(2)設(shè)直線l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).
將y=kx+b代入
+
=1,得(2k2+1)x2+4kbx+2b2-8=0.
故xM=
=
,yM=k·xM+b=
.
所以直線OM的斜率kOM=
=-
,
所以kOM·k=-
.
故直線OM的斜率與直線l的斜率的乘積為定值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
,
,直線
與直線
相交于點(diǎn)
,直線
與直線
的斜率分別記為
與
,且
.
(1)求點(diǎn)
的軌跡
的方程;
(2)過定點(diǎn)
作直線
與曲線
交于
兩點(diǎn),
的面積是否存在最大值?若存在,求出
面積的最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m, n是兩條不同的直線,
是三個(gè)不同的平面, 給出下列四個(gè)命題:
①若m⊥α,n∥α,則m⊥n;; ②若α∥β, β∥r, m⊥α,則m⊥r;
③若m∥α,n∥α,則m∥n;; ④若α⊥r, β⊥r,則α∥β.
其中正確命題的序號(hào)是 ( )
A.
①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
是雙曲線
的兩個(gè)焦點(diǎn),P是C上一點(diǎn),若
,且
的最小內(nèi)角為
,則C的離心率為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,焦距為
.斜率為k的直線l與橢圓M有兩個(gè)不同的交點(diǎn)A,B.
(Ⅰ)求橢圓M的方程;
(Ⅱ)若
,求
的最大值;
(Ⅲ)設(shè)
,直線PA與橢圓M的另一個(gè)交點(diǎn)為C,直線PB與橢圓M的另一個(gè)交點(diǎn)為D.若C,D和點(diǎn)
共線,求k.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
為圓
的圓心,
是圓上的動(dòng)點(diǎn),點(diǎn)
在圓的半徑
上,且有點(diǎn)
和
上的點(diǎn)
,滿足
,
.
(1)當(dāng)點(diǎn)
在圓上運(yùn)動(dòng)時(shí),求點(diǎn)
的軌跡方程;
(2)若斜率為
的直線
與圓
相切,直線
與(1)中所求點(diǎn)
的軌跡交于不同的兩點(diǎn)
,
,
是坐標(biāo)原點(diǎn),且
時(shí),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.命題“x∈R,ex>0”的否定是“x∈R,ex>0”
B.命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題
C.“x2+2x≥ax在x∈[1,2]上恒成立”“(x2+2x)min≥(ax)max在x∈[1,2]上恒成立”
D.命題“若a=﹣1,則函數(shù)f(x)=ax2+2x﹣1只有一個(gè)零點(diǎn)”的逆命題為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的焦點(diǎn)到準(zhǔn)線的距離為
,直線
與拋物線
交于
兩點(diǎn),過這兩點(diǎn)分別作拋物線
的切線,且這兩條切線相交于點(diǎn)
.
(1)若
的坐標(biāo)為
,求
的值;
(2)設(shè)線段
的中點(diǎn)為
,點(diǎn)
的坐標(biāo)為
,過
的直線
與線段
為直徑的圓相切,切點(diǎn)為
,且直線
與拋物線
交于
兩點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,在其定義域上既是偶函數(shù)又在(0,+∞)上單調(diào)遞減的是( )
A.y=x2
B.y=x+1
C.y=﹣lg|x|
D.y=﹣2x
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com