已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bb/7/vn4qz.png" style="vertical-align:middle;" />的函數(shù)
同時(shí)滿足:
①對(duì)于任意的
,總有
; ②
;
③若
,則有
成立。
求
的值;
求
的最大值;
若對(duì)于任意
,總有
恒成立,求實(shí)數(shù)
的取值范圍。
;
的最大值為
;
。
解析試題分析:(1)對(duì)于條件③,令
,得
,又由條件①知
,所以![]()
設(shè)
,則![]()
![]()
即
,故
在
上是單調(diào)遞增的,從而
的最大值為![]()
在
上是增函數(shù),令![]()
函數(shù)
在
上單調(diào)遞增,所以當(dāng)
時(shí),![]()
要使
恒成立,必有
所以![]()
考點(diǎn):本題考查函數(shù)奇偶性和單調(diào)性。
點(diǎn)評(píng):本題主要是對(duì)抽象函數(shù)的考查,在做關(guān)于抽象函數(shù)的題目時(shí),常用到的數(shù)學(xué)思想是賦值法,比如此題中求f(0)的值。對(duì)于恒成立問題:若
恒成立,只需
;若
恒成立,只需
。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f′(x)的圖象關(guān)于直線x=-
對(duì)稱,且f′(1)=0.
(1)求實(shí)數(shù)a,b的值;
(2)討論函數(shù)f(x)的單調(diào)性,并求出單調(diào)區(qū)間 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知定義域?yàn)椋?,+∞)的函數(shù)f(x)滿足:
①x>1時(shí),f(x)<0,②f(
)=1,③對(duì)任意x,y
( 0,+∞),
都有f(xy)= f(x)+ f(y),求不等式f(x)+ f(5-x)≥-2的解集。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知函數(shù)
其中a>0,且a≠1,
(1)求函數(shù)
的定義域;
(2)當(dāng)0<a<1時(shí),解關(guān)于x的不等式
;
(3)當(dāng)a>1,且x∈[0,1)時(shí),總有
恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)函數(shù)
是定義域在(-1,1)上奇函數(shù),且
.
(1)確定函數(shù)
的解析式;
(2)用定義證明
在(-1,1)上是增函數(shù);
(3)解不等式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)
對(duì)于任意的
滿足
.
(1)求
的值;
(2)求證:
為偶函數(shù);
(3)若
在
上是增函數(shù),解不等式![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com