【題目】在直角坐標(biāo)系
中,圓
的參數(shù)方程
(
為參數(shù)).以
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓
的極坐標(biāo)方程;
(2)直線
的極坐標(biāo)方程是
,射線
與圓
的交點(diǎn)為
,
,與直線
的交點(diǎn)為
,求線段
的長(zhǎng).
【答案】(1)
;(2)![]()
【解析】
(1)先由圓的參數(shù)方程消去參數(shù),得到圓的普通方程,再由極坐標(biāo)與直角坐標(biāo)的互化公式,即可得出圓的極坐標(biāo)方程;
(2)由題意,先設(shè)
兩點(diǎn)的極坐標(biāo)為:
,
,將
代入直線
的極坐標(biāo)方程,得到
;將
代入圓的極坐標(biāo)方程,得到
,再由
,即可得出結(jié)果.
(1)因?yàn)椋瑘A
的參數(shù)方程
(
為參數(shù)),消去參數(shù)可得:
;
把
代入
,化簡(jiǎn)得:
,即為此圓的極坐標(biāo)方程;
(2)設(shè)
兩點(diǎn)的極坐標(biāo)為:
,
,
因?yàn)橹本
的極坐標(biāo)方程是
,射線
,
將
代入
得
,即
;
將
代入
得
,
所以
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線C1:y=
x2(p>0)的焦點(diǎn)與雙曲線C2:
-y2=1的右焦點(diǎn)的連線交C1于第一象限的點(diǎn)M.若C1在點(diǎn)M處的切線平行于C2的一條漸近線,則p=( ).
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形
與
均為菱形,
,且
.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)若
為線段
上的一點(diǎn),且滿足直線
與平面
所成角的正弦值為
,求線段
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表.已知在全部105人中抽到隨機(jī)抽取1人為優(yōu)秀的概率為
.
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) |
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可能性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”?
P(K2≥x0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
x0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式及數(shù)據(jù):K2=
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店每天(開始營(yíng)業(yè)時(shí))以每件15元的價(jià)格購(gòu)入
商品若干(
商品在商店的保鮮時(shí)間為8小時(shí),該商店的營(yíng)業(yè)時(shí)間也恰好為8小時(shí)),并開始以每件30元的價(jià)格出售,若前6小時(shí)內(nèi)所購(gòu)進(jìn)的
商品沒有售完,則商店對(duì)沒賣出的
商品將以每件10元的價(jià)格低價(jià)處理完畢(根據(jù)經(jīng)驗(yàn),2小時(shí)內(nèi)完全能夠把
商品低價(jià)處理完畢,且處理完畢后,當(dāng)天不再購(gòu)進(jìn)
商品).該商店統(tǒng)計(jì)了100天
商品在每天的前6小時(shí)內(nèi)的銷售量,由于某種原因銷售量頻數(shù)表中的部分?jǐn)?shù)據(jù)被污損而不能看清,制成如下表格(注:視頻率為概率).
前6小時(shí)內(nèi)的銷售量 (單位:件) | 3 | 4 | 5 |
頻數(shù) | 30 |
|
|
(1)若某天商店購(gòu)進(jìn)
商品4件,試求商店該天銷售
商品獲取利潤(rùn)
的分布列和期望;
(2)若商店每天在購(gòu)進(jìn)4件
商品時(shí)所獲得的平均利潤(rùn)最大,求
的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間租賃甲、乙兩種設(shè)備生產(chǎn)A,B兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)A類產(chǎn)品8件和B類產(chǎn)品15件,乙種設(shè)備每天能生產(chǎn)A類產(chǎn)品10件和B類產(chǎn)品25件,已知設(shè)備甲每天的租賃費(fèi)300元,設(shè)備乙每天的租賃費(fèi)400元,現(xiàn)車間至少要生產(chǎn)A類產(chǎn)品100件,B類產(chǎn)品200件,所需租賃費(fèi)最少為__元![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面推理過程中使用了類比推理方法,其中推理正確的是( )
A. 平面內(nèi)的三條直線
,若
,則
.類比推出:空間中的三條直線
,若
,則![]()
B. 平面內(nèi)的三條直線
,若
,則
.類比推出:空間中的三條向量
,若
,則![]()
C. 在平面內(nèi),若兩個(gè)正三角形的邊長(zhǎng)的比為
,則它們的面積比為
.類比推出:在空間中,若兩個(gè)正四面體的棱長(zhǎng)的比為
,則它們的體積比為![]()
D. 若
,則復(fù)數(shù)
.類比推理:“若
,則
”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校共有學(xué)生15000人,其中男生10500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集200位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).
![]()
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這200個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖,其中樣本數(shù)據(jù)的分組區(qū)間為:
,
,
,
,
,
.估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí)的概率.
(3)在樣本數(shù)據(jù)中,有40位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí),請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.(把表簡(jiǎn)要畫在答題卡上)
男生 | 女生 | 總計(jì) | |
每周平均體育運(yùn)動(dòng)時(shí)間不超過4小時(shí) | |||
每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí) | |||
總計(jì) |
附:
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com