【題目】函數f(x)=
+lnx,其中a為實常數.
(1)討論f(x)的單調性;
(2)不等式f(x)≥1在x∈(0,1]上恒成立,求實數a的取值范圍.
【答案】
(1)解:函數f(x)的定義域為(0,+∞),f′(x)=
,
①當a≤0時,∵x>0,∴x﹣a>0,∴f′(x)>0,
∴f(x)在定義域上單調遞增.
②當a>0時,若x>a,則f′(x)>0,f(x)在(a,+∞)上單調遞增;
若0<x<a,則f′(x)<0,f(x)在(0,a)上單調遞減.
綜上所述,當a≤0時,f(x)在定義域上單調遞增;
當a>0時,f(x)在(a,+∞)上單調遞增,在(0,a)上單調遞減.
(2)解:當x∈(0,1)時,f(x)≥1a≥﹣xlnx+x,
不等式f(x)≥1在x∈(0,1]上恒成立,
a≥[﹣xlnx+x]max,x∈(0,1],
令g(x)=﹣xlnx+x,g′(x)=﹣lnx≥0,x∈(0,1],
∴g(x)在(0,1]上單調遞增,
∴g(x)max=g(1)=1,∴a≥1,
∴a的范圍為[1,+∞).
【解析】(1)求出f(x)的導數,通過討論a的范圍,求出函數的單調區間即可;(2)問題轉化為a≥[﹣xlnx+x]max , x∈(0,1],令g(x)=﹣xlnx+x,求出g(x)的最大值,從而求出a的范圍即可.
【考點精析】認真審題,首先需要了解利用導數研究函數的單調性(一般的,函數的單調性與其導數的正負有如下關系: 在某個區間
內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減),還要掌握函數的最大(小)值與導數(求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】梯形ABCD頂點B、C在以AD為直徑的圓上,AD=2米,
(1)如圖1,若電熱絲由AB,BC,CD這三部分組成,在AB,CD上每米可輻射1單位熱量,在BC上每米可輻射2單位熱量,請設計BC的長度,使得電熱絲輻射的總熱量最大,并求總熱量的最大值;
(2)如圖2,若電熱絲由弧
和弦BC這三部分組成,在弧
上每米可輻射1單位熱量,在弦BC上每米可輻射2單位熱量,請設計BC的長度,使得電熱絲輻射的總熱量最大.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數f(x)=cos(x+
)圖象上所有點的橫坐標縮短為原來的
倍,縱坐標不變,得到函數g(x)的圖象,則函數g(x)的一個減區間是( )
A.[﹣
,
]
B.[﹣
,
]
C.[﹣
,
]
D.[﹣
,
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給定橢圓C:
+
=1(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓”.已知橢圓C的離心率為
,且經過點(0,1).
(1)求實數a,b的值;
(2)若過點P(0,m)(m>0)的直線l與橢圓C有且只有一個公共點,且l被橢圓C的伴隨圓C1所截得的弦長為2
,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“現代五項”是由現代奧林匹克之父顧拜旦先生創立的運動項目,包含射擊、擊劍、游泳、馬術和越野跑五項運動.已知甲、乙、丙共三人參加“現代五項”.規定每一項運動的前三名得分都分別為
,
,
(
且
),選手最終得分為各項得分之和.已知甲最終得22分,乙和丙最終各得9分,且乙的馬術比賽獲得了第一名,則游泳比賽的第三名是
A. 甲 B. 乙 C. 丙 D. 乙和丙都有可能
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1=1,an+1=2an﹣3(﹣1)n(n∈N*).
(1)若bn=a2n﹣1,求證:bn+1=4bn;
(2)求數列{an}的通項公式;
(3)若a1+2a2+3a3+…+nan>λ2n對一切正整數n恒成立,求實數λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣kx+2,k∈R.
(1)若k=1,求函數f(x)的單調區間;
(2)若f(x)<2在R+上恒成立,求k的取值范圍;
(3)若x1>0,x2>0,x1+x2<ex1x2 , 求證x1+x2>1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x2+aln(x+1).
(1)求函數f(x)的單調區間;
(2)若函數F(x)=f(x)+ln
有兩個極值點x1 , x2且x1<x2 , 求證F(x2)>
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com