【題目】中國(guó)傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對(duì)稱美,如圖所示的太極圖是由黑白兩個(gè)魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對(duì)稱統(tǒng)一的形式美、和諧美,給出定義:能夠?qū)AO的周長(zhǎng)和面積同時(shí)平分的函數(shù)稱為這個(gè)圓的“優(yōu)美函數(shù)”,給出下列命題:
①對(duì)于任意一個(gè)圓O,其“優(yōu)美函數(shù)”有無(wú)數(shù)個(gè);
②函數(shù)f(x)=ln(
)可以是某個(gè)圓的“優(yōu)美函數(shù)”;
③函數(shù)y=1+sinx可以同時(shí)是無(wú)數(shù)個(gè)圓的“優(yōu)美函數(shù)”;
④函數(shù)y=2x+1可以同時(shí)是無(wú)數(shù)個(gè)圓的“優(yōu)美函數(shù)”;
⑤函數(shù)y=f(x)是“優(yōu)美函數(shù)”的充要條件為函數(shù)y=f(x)的圖象是中心對(duì)稱圖形.
其中正確的命題是_____.
![]()
【答案】①③④
【解析】
根據(jù)優(yōu)美函數(shù)的定義,經(jīng)過圓心的直線滿足①;對(duì)于函數(shù)
根據(jù)其單調(diào)性且圖象為曲線可判斷②;當(dāng)圓心經(jīng)過
的中心時(shí)可判斷③;直線經(jīng)過圓心時(shí)可判斷④;舉出反例雙曲線可判斷⑤.
①對(duì)于任意一個(gè)圓
,其過圓心的對(duì)稱軸由無(wú)數(shù)條,所以其“優(yōu)美函數(shù)”有無(wú)數(shù)個(gè),故①正確;②函數(shù)
的定義域?yàn)?/span>
,在
上單調(diào)遞減,在
上單調(diào)遞增且圖象為曲線,故不可以是某個(gè)圓的“優(yōu)美函數(shù)”,故②不正確;③當(dāng)圓經(jīng)過函數(shù)
的對(duì)稱中心時(shí),根據(jù)
的圖象可知可以將圓分成優(yōu)美函數(shù),圖象可以延伸,所以可以同時(shí)是無(wú)數(shù)個(gè)圓的“優(yōu)美函數(shù)”;④函數(shù)
只要過圓心,即可以同時(shí)是無(wú)數(shù)個(gè)圓的“優(yōu)美函數(shù)”;⑤函數(shù)
是“優(yōu)美函數(shù)”的充要條件為函數(shù)
的圖象是中心對(duì)稱圖形,不對(duì),有些中心對(duì)稱圖形不一定是“優(yōu)美函數(shù)”,比如“雙曲線”;故答案為①③④.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著電子閱讀的普及,傳統(tǒng)紙質(zhì)媒體遭受到了強(qiáng)烈的沖擊.某雜志社近9年來(lái)的紙質(zhì)廣告收入如下表所示:
根據(jù)這9年的數(shù)據(jù),對(duì)
和
作線性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對(duì)值為0.243;
根據(jù)后5年的數(shù)據(jù),對(duì)
和
作線性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對(duì)值為0.984.
(1)如果要用線性回歸方程預(yù)測(cè)該雜志社2019年的紙質(zhì)廣告收入,現(xiàn)在有兩個(gè)方案,
方案一:選取這9年數(shù)據(jù)進(jìn)行預(yù)測(cè),方案二:選取后5年數(shù)據(jù)進(jìn)行預(yù)測(cè).
從實(shí)際生活背景以及線性相關(guān)性檢驗(yàn)的角度分析,你覺得哪個(gè)方案更合適?
附:相關(guān)性檢驗(yàn)的臨界值表:
![]()
(2)某購(gòu)物網(wǎng)站同時(shí)銷售某本暢銷書籍的紙質(zhì)版本和電子書,據(jù)統(tǒng)計(jì),在該網(wǎng)站購(gòu)買該書籍的大量讀者中,只購(gòu)買電子書的讀者比例為
,紙質(zhì)版本和電子書同時(shí)購(gòu)買的讀者比例為
,現(xiàn)用此統(tǒng)計(jì)結(jié)果作為概率,若從上述讀者中隨機(jī)調(diào)查了3位,求購(gòu)買電子書人數(shù)多于只購(gòu)買紙質(zhì)版本人數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,
,過
的直線
與
軸交于
點(diǎn),與
軸交于
點(diǎn),記
與坐標(biāo)軸圍成的三角形
的面積為
.
(1)若
,且
,求直線
的方程;
(2)若
、
都在正半軸上,求
的最小值;
(3)寫出面積
的取值范圍與直線
條數(shù)的對(duì)應(yīng)關(guān)系.(不需要證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
為定義域R上的奇函數(shù),且在R上是單調(diào)遞增函數(shù),函數(shù)
,數(shù)列
為等差數(shù)列,且公差不為0,若
,則
( )
A. 45B. 15C. 10D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓
的左、右焦點(diǎn)分別為
,上頂點(diǎn)為
,過點(diǎn)
與
垂直的直線交
軸負(fù)半軸于點(diǎn)
,且
恰是
的中點(diǎn),若過
三點(diǎn)的圓恰好與直線
相切.
![]()
(1)求橢圓
的方程;
(2)若直線
與橢圓
交于
兩點(diǎn),在
軸上是否存在點(diǎn)
,使得以
為鄰邊的平行四邊形是菱形?如果存在,求出
的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,底面
是平行四邊形,
平面
,
,
,
是棱
上的一點(diǎn).
(1)證明:
平面
;
(2)若
平面
,求
的值;
(3)在(2)的條件下,三棱錐
的體積是18,求
點(diǎn)到平面
的距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的長(zhǎng)軸長(zhǎng)為4,焦距為![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)過動(dòng)點(diǎn)
的直線交
軸與點(diǎn)
,交
于點(diǎn)
(
在第一象限),且
是線段
的中點(diǎn).過點(diǎn)
作
軸的垂線交
于另一點(diǎn)
,延長(zhǎng)
交
于點(diǎn)
.
(ⅰ)設(shè)直線
的斜率分別為
,證明
為定值;
(ⅱ)求直線
的斜率的最小值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,
,
,
,
平面
.
![]()
(1)求證:
平面
;
(2)若
為線段
的中點(diǎn),且過
三點(diǎn)的平面與線段
交于點(diǎn)
,確定點(diǎn)
的位置,說明理由;并求三棱錐
的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
,點(diǎn)
是直線l:
上的動(dòng)點(diǎn),若在圓C上總存在不同的兩點(diǎn)A,B使得
,則
的取值范圍是_____.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com