已知函數(shù)
.
(1)求
的最小值;
(2)若對所有
都有
,求實數(shù)
的取值范圍.
(1)當(dāng)
時,
取得最小值
.
(2)![]()
解析試題分析:解:
的定義域為
, 1分
的導(dǎo)數(shù)
. 3分
令
,解得
;令
,解得
.
從而
在
單調(diào)遞減,在
單調(diào)遞增. 5分
所以,當(dāng)
時,
取得最小值
. 6分
(Ⅱ)解法一:令
,則
, 8分
①若
,當(dāng)
時,
,
故
在
上為增函數(shù),
所以,
時,
,即
. 10分
②若
,方程
的根為
,
此時,若
,則
,故
在該區(qū)間為減函數(shù).
所以
時,
,
即
,與題設(shè)
相矛盾.
綜上,滿足條件的
的取值范圍是
. 12分
解法二:依題意,得
在
上恒成立,
即不等式
對于
恒成立 . 8分
令
, 則
. 10分
當(dāng)
時,因為
,
故
是
上的增函數(shù), 所以
的最小值是
,
所以
的取值范圍是
. 12分
考點:導(dǎo)數(shù)的運用
點評:主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運用,根據(jù)導(dǎo)數(shù)的符號判定函數(shù)單調(diào)性,以及函數(shù)的最值,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)求
的單調(diào)區(qū)間;
(2)當(dāng)
時,判斷
和
的大小,并說明理由;
(3)求證:當(dāng)
時,關(guān)于
的方程:
在區(qū)間
上總有兩個不同的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(I)當(dāng)
時,討論函數(shù)
的單調(diào)性:
(Ⅱ)若函數(shù)
的圖像上存在不同兩點
,
,設(shè)線段
的中點為
,使得
在點
處的切線
與直線
平行或重合,則說函數(shù)
是“中值平衡函數(shù)”,切線
叫做函數(shù)
的“中值平衡切線”.
試判斷函數(shù)
是否是“中值平衡函數(shù)”?若是,判斷函數(shù)
的“中值平衡切線”的條數(shù);若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
。
(1)求函數(shù)
的單調(diào)遞減區(qū)間;
(2)求切于點
的切線方程;
(3)求函數(shù)
在
上的最大值與最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時,函數(shù)f(x)有極值-
.
(1)求函數(shù)的解析式.
(2)若方程f(x)=k有3個不同的根,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
,
(1)若函數(shù)
在
處的切線方程為
,求實數(shù)
,
的值;
(2)若
在其定義域內(nèi)單調(diào)遞增,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
, 其中
,
是
的導(dǎo)函數(shù).
(Ⅰ)若
,求函數(shù)
的解析式;
(Ⅱ)若
,函數(shù)
的兩個極值點為
滿足
. 設(shè)
, 試求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com