【題目】如下圖,在平面直角坐標系
中,橢圓
的左、右焦點分別為
,
,已知點
和
都在橢圓上,其中
為橢圓的離心率.
![]()
(1)求橢圓的方程;
(2)設(shè)
,
是橢圓上位于
軸上方的兩點,且直線
與直線
平行,
與
交于點
,
(i)若
,求直線
的斜率;
(ii)求證:
是定值.
【答案】(1)
;(2)定值![]()
【解析】試題分析:
根據(jù)橢圓的性質(zhì)和已知
和
,都在橢圓上列式求解即可得到橢圓的方程;
①設(shè)直線
的方程為
,直線
的方程為
,與橢圓方程聯(lián)立,求出
,根據(jù)已知條件
,用待定系數(shù)法求解
②利用直線
與
平行,點
在橢圓上知
,
,由此可以求得
是定值
解析:(1)由題設(shè)知
,
.由點
在橢圓上,得
.
解得
,于是
,又點
在橢圓上,所以
.
即
,解得
.因此,所求橢圓的方程是
.
(2)由(1)知
,
,又直線
與
平行,所以可設(shè)直線
的方程為
,直線
的方程為
.設(shè)
,
,
,
,由
得
,解得
.
故
①
同理,
②
(i)由①②得
解得
.
因為
,故
,所以直線
的斜率為
.
(ii)因為直線
與
平行,所以
,于是
,
故
.由點
在橢圓上知
.
從而
.同理
,因此
.
又由①②知
,
.
所以
.因此
是定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生物興趣小組對冬季晝夜溫差與反季節(jié)新品種大豆發(fā)芽數(shù)之間的關(guān)系進行研究,他們分別記錄了
月
日至
月
日每天的晝夜溫差與實驗室每天
顆種子的發(fā)芽數(shù),得到以下表格
![]()
該興趣小組確定的研究方案是:先從這
組數(shù)據(jù)中選取
組數(shù)據(jù),然后用剩下的
組數(shù)據(jù)求線性回歸方程,再用被選取的
組數(shù)據(jù)進行檢驗.
(1) 求統(tǒng)計數(shù)據(jù)中發(fā)芽數(shù)的平均數(shù)與方差;
(2) 若選取的是
月
日與
月
日的兩組數(shù)據(jù),請根據(jù)
月
日至
月
日的數(shù)據(jù),求出發(fā)芽數(shù)
關(guān)于溫差
的線性回歸方程
,若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差不超過
,則認為得到的線性回歸方程是可靠的,問得到的線性回歸方程是否可靠? 附:線性回歸方程
中斜率和截距最小二乘估法計算公式:
, ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計,2017年國慶中秋假日期間,黔東南州共接待游客590.23萬人次,實現(xiàn)旅游收入48.67億元,同比分別增長44.57%、55.22%.旅游公司規(guī)定:若公司導(dǎo)游接待旅客,旅游年總收入不低于40(單位:百萬元),則稱為優(yōu)秀導(dǎo)游.經(jīng)驗表明,如果公司的優(yōu)秀導(dǎo)游率越高,則該公司的影響度越高.已知甲、乙兩家旅游公司各有導(dǎo)游100名,統(tǒng)計他們一年內(nèi)旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數(shù)分布表如下:
![]()
分組 |
|
|
|
|
|
頻數(shù) |
| 18 | 49 | 24 | 5 |
(Ⅰ)求
的值,并比較甲、乙兩家旅游公司,哪家的影響度高?
(Ⅱ)若導(dǎo)游的獎金
(單位:萬元),與其一年內(nèi)旅游總收入
(單位:百萬元)之間的關(guān)系為
,求甲公司導(dǎo)游的年平均獎金;
(Ⅲ)從甲、乙兩家公司旅游收入在
的總?cè)藬?shù)中,用分層抽樣的方法隨機抽取6人進行表彰,其中有兩名導(dǎo)游代表旅游行業(yè)去參加座談,求參加座談的導(dǎo)游中有乙公司導(dǎo)游的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某水利部門擬在黃河沿岸修建一所水庫,為大致了解甲、乙兩地的降水情況,隨機選取汛期月份中的一周,將這一周內(nèi)每日的降水量數(shù)據(jù)進行統(tǒng)計(單位:
),制成如圖所示的莖葉圖.考慮以下結(jié)論:
①甲地本周的平均降水量低于乙地本周的平均降水量;
②甲地本周的中位降水量高于乙地本周的平均降水量;
③甲地本周的降水量眾數(shù)大于乙地本周的降水量的中位數(shù);
④甲地本周降水量的標準差大于乙地本周降水量的標準差.
![]()
其中根據(jù)莖葉圖能得到的不恰當(dāng)?shù)慕y(tǒng)計結(jié)論的編號為( )
A.①③B.②④C.①④D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著城市化進程日益加快,勞動力日益向城市流動,某市為抽查該市內(nèi)工廠的生產(chǎn)能力,隨機抽取某個人數(shù)為1000人的工廠,其中有750人為高級工,250人為初級工,擬采用分層抽樣的方法從本廠抽取100名工人,來抽查工人的生產(chǎn)能力,初級工和高級工的抽查結(jié)果分組情況如表1和表2.
表1:
生產(chǎn)能力分組 |
|
|
|
|
|
人數(shù) | 4 | 8 |
| 5 | 3 |
表2:
生產(chǎn)能力分組 |
|
|
|
|
人數(shù) | 6 |
| 36 | 18 |
(1)計算
,
,完成頻率分直方圖:
![]()
![]()
圖1:初級工人生產(chǎn)能力的頻率分布直方圖 圖2:高級工人生產(chǎn)能力的頻率分布直方圖
(2)初級工和高級工各抽取多少人?
(3)分別估計兩類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人生產(chǎn)能力的平均數(shù).(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,
,求
的單調(diào)遞減的概率;
(2)當(dāng)
,
且為整數(shù)時,求二次函數(shù)有兩個零點的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)若函數(shù)
是R上的單調(diào)函數(shù),求實數(shù)a的取值范圍;
(2)設(shè)a=
,
(
,
),
是
的導(dǎo)函數(shù).①若對任意的x>0,
>0,求證:存在
,使
<0;②若
,求證:
<
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.下列命題:( )
①函數(shù)
的圖象關(guān)于原點對稱; ②函數(shù)
是周期函數(shù);
③當(dāng)
時,函數(shù)
取最大值;④函數(shù)
的圖象與函數(shù)
的圖象沒有公共點,其中正確命題的序號是
(A)①③ (B)②③ (C)①④ (D)②④
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com