【題目】某示范性高中的校長推薦甲、乙、丙三名學(xué)生參加某大學(xué)自主招生考核測試,在本次考核中只有合格和優(yōu)秀兩個(gè)等級(jí).若考核為合格,授予10分降分資格;考核為優(yōu)秀, 授予20分降分資格.假設(shè)甲、乙、丙考核為優(yōu)秀的概率分別為
、
、
,他們考核所得的等級(jí)相互獨(dú)立.
(1)求在這次考核中,甲、乙、丙三名學(xué)生至少有一名考核為優(yōu)秀的概率;
(2)記在這次考核中甲、乙、丙三名學(xué)生所得降分之和為隨機(jī)變量ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
【答案】
【解析】
(1)記“甲考核為優(yōu)秀”為事件A,“乙考核為優(yōu)秀”為事件B,“丙考核為優(yōu)秀”為事件C,“甲、乙、丙至少有一名考核為優(yōu)秀”為事件E.
則事件A、B、C是相互獨(dú)立事件,事件![]()
![]()
與事件E是對(duì)立事件,于是
P(E)=1-P(![]()
![]()
)=1-(1-
)(1-
)(1-
)=
.
(2)ξ的所有可能取值為30,40,50,60.
P(ξ=30)=P(![]()
![]()
)=(1-
)(1-
)(1-
)=
,
P(ξ=40)=P(A![]()
)+P(
B
)+P(![]()
C)=
,
P(ξ=50)=P(AB
)+P(A
C)+P(
BC)=
,
P(ξ=60)=P(ABC)=
.
所以ξ的分布列為
ξ | 30 | 40 | 50 | 60 |
P |
|
|
|
|
∴E(ξ)=30×
+40×
+50×
+60×
=
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花店每天以每枝
元的價(jià)格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝
元價(jià)格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進(jìn)
枝玫瑰花,求當(dāng)天的利潤
(單位:元)關(guān)于當(dāng)天需求量
(單位:枝,
)的函數(shù)解析式;
(2)花店記錄了
天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量 |
|
|
|
|
|
|
|
頻數(shù) |
|
|
|
|
|
|
|
以
天的各需求量的頻率作為各需求量發(fā)生的概率.
若花店一天購進(jìn)
枝玫瑰花,
表示當(dāng)天的利潤(單位:元),求
的分布列, 數(shù)學(xué)期望及方差;
若花店一天購進(jìn)
枝或
枝玫瑰花,你認(rèn)為應(yīng)購進(jìn)
枝還是
枝?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是底面邊長為1的正三棱錐,
分別為棱長
上的點(diǎn),截面
底面
,且棱臺(tái)
與棱錐
的棱長和相等.(棱長和是指多面體中所有棱的長度之和)
![]()
(1)證明:
為正四面體;
(2)若
,求二面角
的大小;(結(jié)果用反三角函數(shù)值表示)
(3)設(shè)棱臺(tái)
的體積為
,是否存在體積為
且各棱長均相等的直平行六面體,使得它與棱臺(tái)
有相同的棱長和?若存在,請具體構(gòu)造出這樣的一個(gè)直平行六面體,并給出證明;若不存在,請說明理由.
(注:用平行于底的截面截棱錐,該截面與底面之間的部分稱為棱臺(tái),本題中棱臺(tái)的體積等于棱錐
的體積減去棱錐
的體積.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BC,BB1,A1D的中點(diǎn).
![]()
(1)證明:MN∥平面C1DE;
(2)求點(diǎn)C到平面C1DE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
和點(diǎn)
,動(dòng)圓
經(jīng)過點(diǎn)
且與圓
相切,圓心
的軌跡為曲線![]()
(1)求曲線
的方程;
(2)點(diǎn)
是曲線
與
軸正半軸的交點(diǎn),點(diǎn)
在曲線
上,若直線
的斜率
滿足
求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD和矩形ABEF中,
,
,矩形ABEF可沿AB任意翻折.
![]()
(1)求證:當(dāng)點(diǎn)F,A,D不共線時(shí),線段MN總平行于平面ADF.
(2)“不管怎樣翻折矩形ABEF,線段MN總與線段FD平行”這個(gè)結(jié)論正確嗎?如果正確,請證明;如果不正確,請說明能否改變個(gè)別已知條件使上述結(jié)論成立,并給出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(13分)設(shè){an}是公比為正數(shù)的等比數(shù)列a1=2,a3=a2+4.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公園內(nèi)有一塊以
為圓心半徑為
米的圓形區(qū)域.為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設(shè)計(jì)方案:如圖,在圓形區(qū)域內(nèi)搭建露天舞臺(tái),舞臺(tái)為扇形
區(qū)域,其中兩個(gè)端點(diǎn)
,
分別在圓周上;觀眾席為梯形
內(nèi)切在圓
外的區(qū)域,其中
,
,且
,
在點(diǎn)
的同側(cè).為保證視聽效果,要求觀眾席內(nèi)每一個(gè)觀眾到舞臺(tái)
處的距離都不超過
米.設(shè)
,
.問:對(duì)于任意
,上述設(shè)計(jì)方案是否均能符合要求?
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com