設(shè)橢圓
的左焦點為
,離心率為
,過點
且與
軸垂直的直線被橢圓截得的線段長為
.
(1) 求橢圓方程.
(2) 過點
的直線
與橢圓交于不同的兩點
,當(dāng)
面積最大時,求
.
(1)
;(2)
.
解析試題分析:(1)由離心率得
,由過點
且與
軸垂直的直線被橢圓截得的線段長為
得
,再加橢圓中
可解出
,可得橢圓方程;(2)將直線方程設(shè)為
,交點設(shè)出,然后根據(jù)題意算出
的面積
,令
則
,所以
當(dāng)且僅當(dāng)
時等號成立,求出
面積最大時的
.
試題解析:(1)由題意可得
,
,又
,解得
,所以橢圓方程為
(4分)
(2)根據(jù)題意可知,直線
的斜率存在,故設(shè)直線
的方程為
,設(shè)
,
由方程組
消去
得關(guān)于
的方程
(6分)由直線
與橢圓相交于
兩點,則有
,即
得![]()
由根與系數(shù)的關(guān)系得![]()
故
(9分)
又因為原點
到直線
的距離
,
故
的面積![]()
令
則
,所以
當(dāng)且僅當(dāng)
時等號成立,
即
時,
(12分)
考點:1.橢圓方程;2.橢圓與直線綜合;3.基本不等式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線 C
(Ⅰ)求C的方程;
(Ⅱ)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點,當(dāng)圓P的半徑最長時,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
點P是橢圓
外的任意一點,過點P的直線PA、PB分別與橢圓相切于A、B兩點。
(1)若點P的坐標(biāo)為
,求直線
的方程。
(2)設(shè)橢圓的左焦點為F,請問:當(dāng)點P運動時,
是否總是相等?若是,請給出證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,且過點
.
(1)求橢圓的方程;
(2)若過點C(-1,0)且斜率為
的直線
與橢圓相交于不同的兩點
,試問在
軸上是否存在點
,使
是與
無關(guān)的常數(shù)?若存在,求出點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
,點P(-1,0)是其準線與
軸的焦點,過P的直線
與拋物線C交于A、B兩點.
(1)當(dāng)線段AB的中點在直線
上時,求直線
的方程;
(2)設(shè)F為拋物線C的焦點,當(dāng)A為線段PB中點時,求△FAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點
是橢圓
:![]()
上一點,
分別為
的左右焦點
,
,
的面積為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)
,過點
作直線
,交橢圓
異于
的
兩點,直線
的斜率分別為
,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線
經(jīng)過點
,且雙曲線
的漸近線與圓
相切.
(1)求雙曲線
的方程;
(2)設(shè)
是雙曲線
的右焦點,
是雙曲線
的右支上的任意一點,試判斷以
為直徑的圓與以雙曲線實軸為直徑的圓的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
、
分別是橢圓
:
的左、右焦點,點
在直線
上,線段
的垂直平分線經(jīng)過點
.直線
與橢圓
交于不同的兩點
、
,且橢圓
上存在點
,使
,其中
是坐標(biāo)原點,
是實數(shù).
(Ⅰ)求
的取值范圍;
(Ⅱ)當(dāng)
取何值時,
的面積最大?最大面積等于多少?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com