【題目】已知,如圖,在直二面角
中,四邊形
是邊長為
的正方形,
,且
.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)在線段
(不包含端點(diǎn))上是否存在點(diǎn)
,使得
與平面
所成的角為
;若存在,寫出
的值,若不存在,說明理由.
【答案】(Ⅰ)見解析;(Ⅱ)
;(Ⅲ)
.
【解析】試題分析:
(Ⅰ)由面面垂直的性質(zhì)定理可得
,結(jié)合
,可得
平面
.
(Ⅱ)以
為原點(diǎn),以
的方向分別為
軸,
軸的正方向,建立空間直角坐標(biāo)系
,計(jì)算可得平面
的法向量
,設(shè)平面
的法向量
,計(jì)算可得二面角
的余弦值為
.
(Ⅲ)設(shè)存在點(diǎn)
滿足題意,設(shè)
,則
,據(jù)此得到關(guān)于
的方程,解方程可得
.則在線段
上存在點(diǎn)
滿足題意.
試題解析:
(Ⅰ)證明:因?yàn)樵谥倍娼?/span>
中,四邊形
是正方形,
所以
,則
平面
,
又因?yàn)?/span>
平面
,所以
,
因?yàn)?/span>
,即
,
所以
平面
.
(Ⅱ)以
為原點(diǎn),以
的方向分別為
軸,
軸的正方向,建立空間直角坐標(biāo)系![]()
則
,
,
,
.
平面
的法向量
,設(shè)平面
的法向量
,
因?yàn)?/span>
,
,
所以
即![]()
令
,解得
,則
,
所以二面角
的余弦值為
.
(Ⅲ)設(shè)存在點(diǎn)
,使得
與平面
所成的角為
,且
,
則
,
,則有
,
解得
(
舍).
所以在線段
上存在點(diǎn)
,使得
與平面
所成的角為
,
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E、F、P、Q分別是BC、C1D1、AD1、BD的中點(diǎn).
![]()
(1)求證:PQ∥平面DCC1D1;
(2)求證:AC⊥EF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】實(shí)數(shù)a,b滿足ab>0且a≠b,由a、b、
、
按一定順序構(gòu)成的數(shù)列( )
A. 可能是等差數(shù)列,也可能是等比數(shù)列
B. 可能是等差數(shù)列,但不可能是等比數(shù)列
C. 不可能是等差數(shù)列,但可能是等比數(shù)列
D. 不可能是等差數(shù)列,也不可能是等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=﹣2時(shí),求不等式f(x)<g(x)的解集;
(2)設(shè)a>﹣1,且當(dāng)
時(shí),f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的序號是_________.
①
的圖象與
的圖象關(guān)于
軸對稱;
② 若
,則
的值為1;
③ 若
, 則
;
④ 把函數(shù)
的圖象向左平移
個單位長度后,所得圖象的一條對稱軸方程為
;
⑤ 在鈍角
中,
,則
;
⑥
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)若方程
在
上有根,求實(shí)數(shù)
的取值范圍;
(2)設(shè)
,若對任意的
,
都有
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
sinxcosx+cos2x-
.
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)將函數(shù)f(x)圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)g(x)的圖象.若關(guān)于x的方程g(x)-k=0,在區(qū)間[0,
]上有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校對高二600名學(xué)生進(jìn)行了一次知識測試,并從中抽取了部分學(xué)生的成績(滿分100分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.
分 組 | 頻 數(shù) | 頻 率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 |
|
[80,90) |
|
|
[90,100] | 14 | 0.28 |
合 計(jì) |
| 1.00 |
(1)填寫頻率分布表中的空格,補(bǔ)全頻率分布直方圖,并標(biāo)出每個小矩形對應(yīng)的縱軸數(shù)據(jù);
(2)請你估算該年級學(xué)生成績的中位數(shù);
(3)如果用分層抽樣的方法從樣本分?jǐn)?shù)在[60,70)和[80,90)的人中共抽取6人,再從6人中選2人,求2人分?jǐn)?shù)都在[80,90)的概率.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游點(diǎn)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元.根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每提高1元,租不出去的自行車就增加3輛.
規(guī)定:每輛自行車的日租金不超過20元,每輛自行車的日租金x元只取整數(shù),并要求出租所有自行車一日的總收入必須超過一日的管理費(fèi)用,用y表示出租所有自行車的日凈收入(即一日中出租所有自行車的總收入減去管理費(fèi)后的所得).
(1)求函數(shù)y=f(x)的解析式及定義域;
(2)試問日凈收入最多時(shí)每輛自行車的日租金應(yīng)定為多少元?日凈收入最多為多少元?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com