(1)已知等差數(shù)列
,
(
),求證:
仍為等差數(shù)列;
(2)已知等比數(shù)列![]()
),類比上述性質(zhì),寫出一個真命題并加以證明.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項均不相等的等差數(shù)列
的前三項和為18,
是一個與
無關(guān)的常數(shù),若
恰為等比數(shù)列
的前三項,(1)求
的通項公式.(2)記數(shù)列
,
的前三
項和為
,求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共14分)
在單調(diào)遞增數(shù)列
中,
,不等式![]()
對任意
都成立.
(Ⅰ)求
的取值范圍;
(Ⅱ)判斷數(shù)列
能否為等比數(shù)列?說明理由;
(Ⅲ)設(shè)
,
,求證:對任意的
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知數(shù)列
中,
,
,且![]()
.
(1)設(shè)
,求
是的通項公式;
(2)求數(shù)列
的通項公式;
(3)若
是
與
的等差中項,求
的值,并證明:對任意的
,
是
與
的等差中項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知
是遞增的等差數(shù)列,
.
(Ⅰ)求數(shù)列
的通項公式;
(Ⅱ)若
,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知數(shù)列
為等差數(shù)列,公差
,
是數(shù)列
的前
項和, 且
.
(1)求數(shù)列
的通項公式
;(2)令
,求數(shù)列
的前
項和
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com