(2)已知橢圓的中心在原點(diǎn),以坐標(biāo)軸為對(duì)稱軸,且經(jīng)過(guò)兩點(diǎn)P1(
,1)、P2(-
,-
),求橢圓的方程.
思路分析:(1)若焦點(diǎn)在x軸上,設(shè)方程為
=1(a>b>0).
∵橢圓過(guò)P(3,0),∴
=1.
又2a=3×2b,∴a=3,b=1,方程為
+y2=1.
若焦點(diǎn)在y軸上,設(shè)方程為
=1(a>b>0).
∵橢圓過(guò)點(diǎn)P(3,0),
∴
=1.
又2a=3×2b,∴a=9,b=3.
∴方程為![]()
∴所求橢圓的方程為
+y2=1或![]()
(2)設(shè)橢圓方程為mx2+ny2=1(m>0,n>0,且m≠n).
∵橢圓經(jīng)過(guò)P1、P2點(diǎn),∴P1、P2點(diǎn)坐標(biāo)適合橢圓方程,則![]()
①、②兩式聯(lián)立,解得m=
,n=
.
∴所求橢圓方程為![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| x2 |
| 16 |
| y2 |
| 9 |
| AP |
| BP |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| x2 |
| 16 |
| y2 |
| 9 |
| AM |
| BM |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省四會(huì)市高三第三次統(tǒng)測(cè)文科數(shù)學(xué) 題型:解答題
(本小題滿分14分)
已知橢圓以坐標(biāo)原點(diǎn)為中心,坐標(biāo)軸為對(duì)稱軸,且該橢圓以拋物線
的焦點(diǎn)
為其一個(gè)焦點(diǎn),以雙曲線
的焦點(diǎn)
為頂點(diǎn)。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)
,且C、D分別為橢圓的上頂點(diǎn)和右頂點(diǎn),點(diǎn)M是線段CD上的動(dòng)點(diǎn),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三11月月考文科數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分)已知橢圓以坐標(biāo)原點(diǎn)為中心,坐標(biāo)軸為對(duì)稱軸,且該橢圓以拋物線
的焦點(diǎn)
為其一個(gè)焦點(diǎn),以雙曲線
的焦點(diǎn)
為頂點(diǎn)。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)
,且
分別為橢圓的上頂點(diǎn)和右頂點(diǎn),點(diǎn)
是線段
上的動(dòng)點(diǎn),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年江蘇省無(wú)錫市部分學(xué)校高三4月聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com