【題目】如圖,
是圓
的直徑,
垂直圓
所在的平面,
是圓
上的點.
![]()
(1)求證:
平面
;
(2)設
為
的中點,
為
的重心,求證:
平面
.
科目:高中數學 來源: 題型:
【題目】若函數f(x)和g(x)滿足:①在區(qū)間[a,b]上均有定義;②函數y=f(x)-g(x)在區(qū)間[a,b]上至少有一個零點,則稱f(x)和g(x)在[a,b]上具有關系G.
(1)若f(x)=lgx,g(x)=3-x,試判斷f(x)和g(x)在[1,4]上是否具有關系G,并說明理由;
(2)若f(x)=2|x-2|+1和g(x)=mx2在[1,4]上具有關系G,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,已知曲線
,將曲線
上的點向左平移一個單位,然后縱坐標不變,橫坐標軸伸長到原來的2倍,得到曲線
,又已知直線
(
是參數),且直線
與曲線
交于
兩點.
(I)求曲線
的直角坐標方程,并說明它是什么曲線;
(II)設定點
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
,
.
(I)若
,求函數
在點
處的切線方程;
(II)若函數
在
上是增函數,求實數
的取值范圍;
(III)令
,
(
是自然對數的底數),求當實數
等于多少時,可以使函數
取得最小值為3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線
的頂點為坐標原點O,焦點F在
軸正半軸上,準線
與圓
相切.
(Ⅰ)求拋物線
的方程;
(Ⅱ)已知直線
和拋物線
交于點
,命題
:“若直線
過定點(0,1),則
”,
請判斷命題
的真假,并證明.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com