【題目】如圖在
中,
是
的中線,
是
上的動(dòng)點(diǎn),
是邊
上動(dòng)點(diǎn),則
的最小值為______________.
![]()
【答案】![]()
【解析】
作E關(guān)于AD的對(duì)稱點(diǎn)M,連接CM交AD于F,連接EF,過C作CN⊥AB于N,根據(jù)等腰三角形“三線合一”得出BD的長和AD⊥BC,再利用勾股定理求出AD,利用“等面積法”結(jié)合垂線段最短進(jìn)一步求出最小值即可.
![]()
如圖,作E關(guān)于AD的對(duì)稱點(diǎn)M,連接CM交AD于F,連接EF,過C作CN⊥AB于N,
∵AB=AC=13,BC=10,AD是△ABC的中線,
∴BD=DC=5,AD⊥BC,AD平分∠BAC,
∴M在AB上,
在Rt△ABD中,由勾股定理可得:
AD=
,
∴
,
∴
,
∵E關(guān)于AD的對(duì)稱點(diǎn)M,
∴EF=FM,
∴CF+EF=CF+FM=CM,
根據(jù)垂線段最短可得:CM≥CN,
即:CF+EF≥
,
∴CF+EF的最小值為:
,
故答案為:
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)
是
的外角平分線上一點(diǎn),且滿足
,過點(diǎn)
作
于點(diǎn)
,
交
的延長線于點(diǎn)
,則下列結(jié)論:①
;②
;③
;④
.其中正確的結(jié)論有( )
![]()
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某村的居民自來水管道需要改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成,若乙隊(duì)單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍,如果由甲、乙兩隊(duì)先合做
天,那么余下的工程由甲隊(duì)單獨(dú)完成還需5天.設(shè)這項(xiàng)工程的規(guī)定時(shí)間是x天,則根據(jù)題意,下面所列方程正確的是( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD 是平行四邊形,AB=c,AC=b,BC=a,拋物線 y=ax2+bx﹣c 與 x 軸的一個(gè)交點(diǎn)為(m,0).
(1)若四邊形ABCD是正方形,求拋物線y=ax2+bx﹣c的對(duì)稱軸;
(2)若 m=
c,ac﹣4b<0,且 a,b,c為整數(shù),求四邊形 ABCD的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線L:y=﹣
x+2與x軸、y軸分別交于A、B兩點(diǎn),在y軸上有一點(diǎn)C(0,4),動(dòng)點(diǎn)M從A點(diǎn)以每秒1個(gè)單位的速度沿x軸向左移動(dòng).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求△COM的面積S與M的移動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時(shí)△COM≌△AOB,請直接寫出此時(shí)t值和M點(diǎn)的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖(1),已知:在三角形
中,
,
,直線
經(jīng)過點(diǎn)
,
直線
,
直線
,垂足分別為點(diǎn)
,試寫出線段
和
之間的數(shù)量關(guān)系為_________________.
(2)思考探究:如圖(2),將圖(1)中的條件改為:在
中,
三點(diǎn)都在直線
上,并且
,其中
為任意銳角或鈍角.請問(1)中結(jié)論還是否成立?若成立,請給出證明;若不成立,請說明理由.
(3)拓展應(yīng)用:如圖(3),
是
三點(diǎn)所在直線
上的兩動(dòng)點(diǎn),(
三點(diǎn)互不重合),點(diǎn)
為
平分線上的一點(diǎn),且
與
均為等邊三角形,連接
,若
,試判斷
的形狀并說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在平面直角坐標(biāo)系xOy中,A(4,0)、B(0,3)、C(4,3),I是△ABC的內(nèi)心,將△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后,I的對(duì)應(yīng)點(diǎn)I′的坐標(biāo)為( )
![]()
A. (-2,3) B. (-3,2) C. (3,-2) D. (2,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉淇同學(xué)要證明命題“兩組對(duì)邊分別相等的四邊形是平行四邊形”是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.
已知:如圖1,在四邊形ABCD中,BC=AD,AB=
![]()
求證:四邊形ABCD是 四邊形.
(1)在方框中填空,以補(bǔ)全已知和求證;
(2)按嘉淇同學(xué)的思路寫出證明過程;
(3)用文字?jǐn)⑹鏊C命題的逆命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°得到△EFC,連接AF、BE.
(1)求證:四邊形ABEF是平行四邊形;
(2)當(dāng)∠ABC為多少度時(shí),四邊形ABEF為矩形?請說明理由.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com