【題目】如圖,已知直線
經(jīng)過(guò)點(diǎn)
,交x軸于點(diǎn)A,y軸于點(diǎn)B,F為線段AB的中點(diǎn),動(dòng)點(diǎn)C從原點(diǎn)出發(fā),以每秒1個(gè)位長(zhǎng)度的速度沿y軸正方向運(yùn)動(dòng),連接FC,過(guò)點(diǎn)F作直線FC的垂線交x軸于點(diǎn)D,設(shè)點(diǎn)C的運(yùn)動(dòng)時(shí)間為t秒.
當(dāng)
時(shí),求證:
;
連接CD,若
的面積為S,求出S與t的函數(shù)關(guān)系式;
在運(yùn)動(dòng)過(guò)程中,直線CF交x軸的負(fù)半軸于點(diǎn)G,
是否為定值?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)
;(3)
.
【解析】
(1)連接OF,根據(jù)“直線
經(jīng)過(guò)點(diǎn)
”可得k=1,進(jìn)而求出A(﹣4,0),B(0,4),得出△AOB是等腰直角三角形,得出∠CBF=45°,得出OF=
AB=BF,OF⊥AB,得出∠OFD=∠BFC,證得△BCF≌△ODF,即可得出結(jié)論
(2)①根據(jù)全等三角形的性質(zhì)可得出0<t<4時(shí),BC=OD=t﹣4,再根據(jù)勾股定理得出CD2=2t2-8t+16,證得△FDC是等腰直角三角形,得出
,即可得出結(jié)果;
②同理當(dāng)t≥4時(shí),得出BC=OD=t﹣4,由勾股定理得出CD2=OD2+OC2=2t2﹣8t+16,證出△FDC是等腰直角三角形,得出FC2
CD2,即可得出結(jié)果;
(3)由待定系數(shù)法求出直線CF的解析式,當(dāng)y=0時(shí),可得出G
,因此OG
,求出
即可.
證明:連接OF,如圖1所示:
![]()
直線
經(jīng)過(guò)點(diǎn)
,
,解得:
,
直線
,
當(dāng)
時(shí),
;當(dāng)
時(shí),
;
,
,
,
,
是等腰直角三角形,
,
為線段AB的中點(diǎn),
,
,
,
,
,
,
,
在
和
中,
,
≌
,
;
解:
當(dāng)
時(shí),連接OF,如圖2所示:
![]()
由題意得:
,
,
由
得:
≌
,
,
,
,
,
是等腰直角三角形,
,
的面積
;
當(dāng)
時(shí),連接OF,如圖3所示:
![]()
由題意得:
,
,
由
得:
≌
,
,
,
,
,
是等腰直角三角形,
,
的面積
;
綜上所述,S與t的函數(shù)關(guān)系式為
;
解:
為定值
;理由如下:
當(dāng)
時(shí),如圖4所示:
![]()
當(dāng)設(shè)直線CF的解析式為
,
,
,F為線段AB的中點(diǎn),
,
把點(diǎn)
代入
得:
,
解得:
,
直線CF的解析式為
,
當(dāng)
時(shí),
,
,
,
;
當(dāng)
時(shí),如圖5所示:
![]()
同
得:
;
綜上所述,
為定值
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,-1).
(1)請(qǐng)以y軸為對(duì)稱(chēng)軸,畫(huà)出與△ABC對(duì)稱(chēng)的△A1B1C1,并直接寫(xiě)出點(diǎn)A1、B1、C1的坐標(biāo);
(2)△ABC的面積是 .
(3)點(diǎn)P(a+1,b-1)與點(diǎn)C關(guān)于x軸對(duì)稱(chēng),則a= ,b= .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=﹣x2+
x+2與直線y=
x+2相交于點(diǎn)C和D,點(diǎn)P是拋物線在第一象限內(nèi)的點(diǎn),它的橫坐標(biāo)為m,過(guò)點(diǎn)P作PE⊥x軸,交CD于點(diǎn)F.
(1)求點(diǎn)C和D的坐標(biāo);
(2)求拋物線與x軸的交點(diǎn)坐標(biāo);
(3)如果以P、C、O、F為頂點(diǎn)的四邊形是平行四邊形,求m的值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,真命題的是( )
A.兩邊和一角對(duì)應(yīng)相等,兩三角形全等
B.兩腰對(duì)應(yīng)相等的兩等腰三角形全等
C.兩角和一邊對(duì)應(yīng)相等,兩三角形全等
D.兩銳角對(duì)應(yīng)相等的兩直角三角形全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,AC,BD是對(duì)角線,將△DCB繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)45°得到△DGH,HG交AB于點(diǎn)E,連接DE交AC于點(diǎn)F,連接FG.則下列結(jié)論:
①四邊形AEGF是菱形;②△HED的面積是1﹣
;③∠AFG=112.5°;④BC+FG=
.其中正確的結(jié)論是( 。
![]()
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖一,在平面直角坐標(biāo)系中,
是
軸正半軸上一點(diǎn),
是第四象限一點(diǎn),
軸,交
軸負(fù)半軸于
,且(a-2)+|b+3|=0,
四邊形AOBC=12.
(1)求
點(diǎn)坐標(biāo)
(2)如圖二,設(shè)
為線段
上一動(dòng)點(diǎn)(點(diǎn)
不與點(diǎn)
重合),求證:∠ADB+∠DBC-∠OAD=180°
(3)如圖三,當(dāng)
點(diǎn)在線段
上運(yùn)動(dòng)(點(diǎn)
不與點(diǎn)
重合),
點(diǎn)在線段
上運(yùn)動(dòng)(點(diǎn)
不與點(diǎn)
重合)時(shí),連接
、
作∠OAD、∠DEB的平分線交于
點(diǎn),請(qǐng)你探索∠AFE與∠ADE之間的關(guān)系,并說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連接AC,過(guò)
上一點(diǎn)E作EG∥AC交CD的延長(zhǎng)線于點(diǎn)G,連接AE交CD于點(diǎn)F,且EG=FG.
![]()
(1)求證:EG是⊙O的切線;
(2)延長(zhǎng)AB交GE的延長(zhǎng)線于點(diǎn)M,若AH=2,
,求OM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】材料閱讀:
若a是正整數(shù),則長(zhǎng)度為
的線段是有可能表示正方形網(wǎng)格中兩個(gè)格點(diǎn)之間的距離(設(shè)小正方形的長(zhǎng)度為單位1).如圖1所示,A、B兩點(diǎn)之間的距離就是
.
![]()
(1)在圖1中以A為一個(gè)端點(diǎn),畫(huà)出一條長(zhǎng)為
的線段AC;
(2)
(空格處填正整數(shù),兩組數(shù)要求不一樣),并根據(jù)你填的數(shù)字,在圖2中畫(huà)出兩種對(duì)應(yīng)的線段,其長(zhǎng)度均為
;
(3)利用材料所給的方法,直接寫(xiě)出三邊長(zhǎng)分別為
、
、
的三角形的面積:__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:平面直角坐標(biāo)系中,點(diǎn)A(a,b)的坐標(biāo)滿足|a﹣b|+b2﹣8b+16=0.
![]()
(1)如圖1,求證:OA是第一象限的角平分線;
(2)如圖2,過(guò)A作OA的垂線,交x軸正半軸于點(diǎn)B,點(diǎn)M、N分別從O、A兩點(diǎn)同時(shí)出發(fā),在線段OA上以相同的速度相向運(yùn)動(dòng)(不包括點(diǎn)O和點(diǎn)A),過(guò)A作AE⊥BM交x軸于點(diǎn)E,連BM、NE,猜想∠ONE與∠NEA之間有何確定的數(shù)量關(guān)系,并證明你的猜想;
(3)如圖3,F(xiàn)是y軸正半軸上一個(gè)動(dòng)點(diǎn),連接FA,過(guò)點(diǎn)A作AE⊥AF交x軸正半軸于點(diǎn)E,連接EF,過(guò)點(diǎn)F點(diǎn)作∠OFE的角平分線交OA于點(diǎn)H,過(guò)點(diǎn)H作HK⊥x軸于點(diǎn)K,求2HK+EF的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com