
證明:(1)連接OC,
∵AE⊥MN,BF⊥MN,
∴AE∥BF,而AB≠EF,
∴四邊形ABFE為梯形,
∵OC∥AE∥BF,
∴EC=CF,
∴OC為梯形ABFE的中位線,
∴AE+BF=2OC,
即:AE+BF=AB.
(2)連接AC、BC,
∵AB是直徑,
∴∠ACB=90°,
∴∠ECA+∠FCB=90°,
∵∠CBF+∠FCB=90°,
∠CBF=∠ECA,
∴△AEC∽△CFB,
∴CF•EC=AE•BF,
∵CF=EC=

EF,
∴EF
2=4AE•BF.
分析:(1)連接OC,先利用AE、BF都垂直于MN,而AB≠EF,可證四邊形ABFE是梯形,而O是AB中點,且AE∥OC∥BF,利用平行線分線段成比例定理的推論,易得CE:CF=AO:BO,那么C也是EF中點,從而OC使梯形中位線,利用梯形中位線定理可證AE+BF=2OC,而AB=2OC,即可證;
(2)連接AC、BC,AB是直徑,易得∠ACB是90°,從而∠ACE+∠FCB=90°,而BF⊥MN,易得∠FCB+∠FBC=90°,利用同角的余角相等,可證∠ECA=∠FBC,再加上一對直角相等,容易證出△EAC∽△FCB,可得比例線段,再結合CE=CF=

EF,代入比例線段,化簡即可得證.
點評:本題利用了梯形的判定、平行線分線段成比例定理的推論、梯形中位線定理、同角的余角相等、相似三角形的判定和性質等知識.