【題目】坐標平面上,某二次函數圖形的頂點為(2,﹣1),此函數圖形與x軸相交于P、Q兩點,且PQ=6.若此函數圖形通過(1,a)、(3,b)、(﹣1,c)、(﹣3,d)四點,則a、b、c、d之值何者為正?( )
A.a
B.b
C.c
D.d
【答案】D
【解析】解:∵二次函數圖形的頂點為(2,﹣1),
∴對稱軸為x=2,
∵
×PQ=
×6=3,
∴圖形與x軸的交點為(2﹣3,0)=(﹣1,0),和(2+3,0)=(5,0),
已知圖形通過(2,﹣1)、(﹣1,0)、(5,0)三點,
如圖,![]()
由圖形可知:a=b<0,c=0,d>0.
故選:D.
【考點精析】解答此題的關鍵在于理解拋物線與坐標軸的交點的相關知識,掌握一元二次方程的解是其對應的二次函數的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.
科目:初中數學 來源: 題型:
【題目】如圖長方形MNPQ是菜市民健身廣場的平面示意圖,它是由6個正方形拼成的長方形,中間最小的正方形A的邊長是1,觀察圖形特點可知長方形相對的兩邊是相等的(如圖中MN=PQ).正方形四邊相等.請根據這個等量關系,試計算長方形MNPQ的面積,結果為 .
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在平面直角坐標系xOy中,拋物線y1=ax2+bx(a≠0),與x軸正半軸交于點A1(2,0),頂點為P1 , △OP1A1為正三角形,現將拋物線y1=ax2+bx(a≠0)沿射線OP1平移,把過點A1時的拋物線記為拋物線y2 , 記拋物線y2與x軸的另一交點為A2;把拋物線y2繼續沿射線OP1平移,把過點A2時的拋物線記為拋物線y3 , 記拋物線y3與x軸的另一交點為A3;….;把拋物線y2015繼續沿射線OP1平移,把過點A2015時的拋物線記為拋物線y2016 , 記拋物線y2016與x軸的另一交點為A2016 , 頂點為P2016 . 若這2016條拋物線的頂點都在射線OP1上.![]()
(1)①求△OP1A1的面積;②求a,b的值;
(2)求拋物線y2的解析式;
(3)請直接寫出點A2016以及點P2016坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠AOD=150°,OB、OC、OM、ON 是∠AOD 內的射線,若∠BOC=20°,∠AOB=10°,OM 平分∠AOC,ON 平分∠BOD,當∠BOC 在∠AOD 內繞著點 O以 3°/秒的速度逆時針旋轉 t 秒時,當∠AOM:∠DON=3:4 時,則 t=____________.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一內部裝有水的直圓柱形水桶,桶高20公分;另有一直圓柱形的實心鐵柱,柱高30公分,直立放置于水桶底面上,水桶內的水面高度為12公分,且水桶與鐵柱的底面半徑比為2:1.今小賢將鐵柱移至水桶外部,過程中水桶內的水量未改變,若不計水桶厚度,則水桶內的水面高度變為多少公分?( )![]()
A.4.5
B.6
C.8
D.9
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(一),
為一條拉直的細線,A、B兩點在
上,且
:
=1:3,
:
=3:5.若先固定B點,將
折向
,使得
重迭在
上,如圖(二),再從圖(二) 的A點及與A點重迭處一起剪開,使得細線分成三段,則此三段細線由小到大的長度比為何?( ) ![]()
A.1:1:1
B.1:1:2
C.1:2:2
D.1:2:5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD是一張邊長為12公分的皮革.皮雕師傅想在此皮革兩相鄰的角落分別切下△PDQ與△PCR后得到一個五邊形PQABR,其中PD=2DQ,PC=RC,且P、Q、
R三點分別在CD、AD、BC上,如圖所示.![]()
(1)當皮雕師傅切下△PDQ時,若DQ長度為x公分,請你以x表示此時△PDQ的面積.
(2)承(1),當x的值為多少時,五邊形PQABR的面積最大?請完整說明你的理由并求出答案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知數軸上兩點A,B對應的數分別是﹣1,3,點P為數軸上的一動點,其對應的數為x
![]()
(1)A、B兩點的距離AB= ;
(2)在數軸上是否存在點P,使PA+PB=6?若存在,請求出x的值;若不存在,請說明理由.
(3)如圖2,若點P以每秒1個單位的速度從點O出發向右運動,同時點A以每秒5個單位的速度向左運動,點B以每秒20個單位的速度向右運動,在運動的過程中,M、N分別是AP、OB的中點,問:
的值是否發生變化?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2017·河北遷安一模)如圖,在Rt△ABC中,直角邊AC=7 cm,BC=3 cm,CD為斜邊AB上的高,點E從點B出發沿直線BC以2 cm/s的速度移動,過點E作BC的垂線交直線CD于點F.
(1)試說明:∠A=∠BCD;
(2)點E運動多長時間,CF=AB?并說明理由.
![]()
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com